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Abstract. In this paper we explore the relations between the standard dual problem of a convex
generalized fractional programming problem and the “partial” dual problem proposed by Barros ez
al. (1994). Taking into account the similarities between these dual problems and using basic duality
results we propose a new algorithm to directly solve the standard dual of a convex generalized
fractional programming problem, and hence the original primal problem, if strong duality holds.
This new algorithm works in a similar way as the algorithm proposed in Barros et al. (1994) to
solve the “partial” dual problem. Although the convergence rates of both algorithms are similar, the
new algorithm requires slightly more restrictive assumptions to ensure a superlinear convergence
rate. An important characteristic of the new algorithm is that it extends to the nonlinear case the
Dinkelbach-type algorithm of Crouzeix et al. (1985) applied to the standard dual problem of a
generalized linear fractional program. Moreover, the general duality results derived for the nonlinear
case, yield an alternative way to derive the standard dual of a generalized linear fractional program.
The numerical results, in case of quadratic-linear ratios and linear constraints, show that solving
the standard dual via the new algorithm is in most cases more efficient than applying directly the
Dinkelbach-type algorithm to the original generalized fractional programming problem. However,
the numerical results also indicate that solving the alternative dual (Barros et al., 1994) is in general
more efficient than solving the standard dual.
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1. Introduction

Fractional programming, i.e. the minimization of a ratio of two functions sub-
ject to constraints, has been studied extensively during the last several decades
(Avriel er al., 1988; Craven, 1988; Pardalos and Phillips, 1991; Schaible, 1978,
1983; Schaible and Ibaraki, 1983). Lately the focus has shifted towards multi-ratic
optimization problems. In particular to generalized fractional programs, where the
largest of several ratios of functions is to be minimized (Barros, 1995; Barros
et al., 1994; Bemard and Ferland, 1989; Benadada, 1989; Crouzeix and Ferland,
1991; Crouzeix et al., 1983, 1985, 1986). These types of problems arise in eco-
nomic equilibrium problems, in management applications of goal programming
and multi-objective programming involving ratios of functions, and in rational
approximation in numerical analysis (Crouzeix et al., 1983).

Among the solution procedures to tackle generalized fractional programs the
most popular is the parametric approach. This approach gives rise to a class of
algorithms, which are surveyed by Crouzeix and Ferland (1991). Computational
experience with some of these algorithms is reported in Benadada (1989); Bernard
and Ferland (1989); Ferland and Potvin (1985). An important class of generalized
fractional programs is given by convex generalized fractional programs. For this
special class a dual description is given by means of standard Lagrangian duality
results (Avriel ez al., 1988; Craven, 1988; Jagannathan and Schaible, 1983; Werner,
1988). However, these standard duality results did not appear to provide efficient
computational tools to solve this class of problems. Quite recently, Barros et al.
(1994) proposed a different dual description and at the same time used this alter-
native dual problem to solve the primal problem. In particular the associated dual
algorithm can be seen as the dual of a Dinkelbach-type procedure (Crouzeix et
al., 1985) and its behavior in case of quadratic-linear ratios and linear constraints
appears to be superior to the primal Dinkelbach-type algorithm (Crouzeix ez al.,
1985) and also to its scaled version (Crouzeix et al., 1986). Based on this approach
we introduce in this paper a new dual algorithm solving the standard dual problem,
which as the algorithm of Barros et al. (1994) detects at the same time an optimal
primal solution. It will also be shown that this new algorithrn extends to the non-
linear case the Dinkelbach-type algorithm applied to the standard dual probiem of
a generalized linear fractional program, proposed in Crouzeix et al. (1985). At the
same time, this enables us to show that the standard dual of a generalized linear
fractional programming problem (Crouzeix er al. (1983, 1985); Jagannathan and
Schaible (1983)) can actually be derived using classical Lagrangian results if the
feasible region is a polytope. To summarize, the algorithrn discussed in this paper
shows how to use the standard dual of a convex generalized fractional programming
problem to solve the primal problem. However, it turns out from a computational
point of view that this new dual algorithm is inferior to the dual algorithm proposed
in Barros et al. (1994) to solve the alternative dual.
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The paper is organized in the following way. We start by briefly reviewing the
dual algorithm proposed in Barros et al. (1994) and the Dinkelbach-type algorithm
introduced in Crouzeix et al. (1985) for generalized fractional programming prob-
lems. In Section 3.1 the approach followed in Barros et al. (1994) is related to the
parametric problem associated with the standard dual problem of a convex general-
ized fractional problem described in Avriel et al. (1988); Craven (1988); Crouzeix
et al. (1983); Jagannathan and Schaible (1983); Werner (1988). This relation will
enable the construction of a new algorithm to solve a convex generalized fractional
programming problem by means of its standard dual problem. In Section 3.2 we
start by showing how the general duality results can be directly used to derive the
standard dual of a generalized linear fractional programming problem (Crouzeix et
al., 1983, 1985; Jagannathan and Schaible, 1983). Moreover, it is also shown that
in the linear case the new algorithm corresponds to the Dinkelbach-type algorithm
applied to the standard dual of a generalized linear fractional program. A scaled
version of the new algorithm is also briefly discussed in Section 4. Computational
results comparing the performance of the new algorithm with the dual algorithm
of Barros et al. (1994) and the usual Dinkelbach-type approach are presented in
Section 5. To conclude we give some final remarks.

2. Generalized Fractional Programming

Let X C R™ be acompact setand f;,9;:: K —» R, i € I :={1,...,m}, m > 1,
a class of continuous functions where K is an open set containing X. Assum-
ing gi(z) > O forevery x € X and ¢ € I, consider the generalized fractional
program

, (z

inf max £i{ ) (P)
zex i€l gi(z)

Since the function  — max,¢; g ’Eg is finite-valued and continuous on the compact

set X C R™ the optimization problem (P) has an optimal solution with optimal
objective value J(P). We will also assume that the feasible set X" is convex and that
either the vector-valued function f(2)7 := (fi(z),..., fm(z)) is nonnegative and
convex on X, and g(z) " := (g1(), ..., gm(z)) positive concave on X or that f
is convex and g positive affine on A'. Observe that, contrary to convex generalized
fractional programming it is not required to particularize the feasible set X'

The dual approach introduced in Barros et al. (1994) is based on the following
equality, which follows from the assumptions and Sion’s minimax theorem (Sion,
1958):

. filz) .y f(2)
;ne%{%xgi@)}—f;‘é%{?é% yTg(a:)} W



142 A.L BARROS ET AL.

with ¥ := {y € R™: y > 0,Z;cry; = 1}. The above equality relation permits to
establish a new dual for the problem (P). In fact, let ¢ : ¥ — R be defined by

i)
v) = wEXy Tg(z)

As shown in Lemma 3.1 of Pshenichnyi (1971), the function ¢ is continuous on
3 and, moreover, it is semistrictly quasiconcave (Avriel et al., 1988), since it is
the infimum of semistrictly quasiconcave functions. Thus, by (1), the optimization
problem

max c(y) = max {mm v () } Q

yeL ves |zeX ¥ g(z)

is a semistrictly quasiconcave optimization problem, where a local maximum is a
global maximum (Avriel e? al., 1988). Moreover, the above optimization problern
can be seen as a “partial” dual program of the generalized fractional program (P),
since it only “dualizes” the ratios. Observe also that optimization problem (Q) is a
particular generalized fractional program involving an infinite number of ratios.

The dual method proposed in Bartros et al., (1994) solves (Q) by constructing a
sequence yx € X, k > 0 such that the sequence {c(yx) : ¥ > 0} is nondecreasing
and limg1oo ¢(yx) = Y(P). In order to construct such a sequence, the parametric
problem associated with (Q) is considered:

gleag F(y, \) (Qx)

€))

where the function F' : £ x R — R is given by:
= min Lo T _
F(y,A) = min {y" (f() - Ag(@))} . )

Hence, at the point y; € X with objective value c(yx) the parametric problem
(Qc(yy)) has to be solved. If the optimal value is zero then the current iteration
point y; is the optimal solution of (Q). Otherwise, the next iteration point is
given by y+1 with Y4 an optimal solution of (Q.(y, )). Moreover, computing the
value c(yx+1) is equivalent to finding the unique root of F(yx41,A) = 0. Since
solving (Qc(y,)) directly usually takes a lot of time, an indirect approach to solve
this problem, making use of the Karush—-Kuhn-~Tucker conditions, is presented in
Barros et al. (1994). Besides being efficient, this approach also recovers a primal
solution associated with the current iteration point g4, and this enables to exhibit
at the end of the procedure an optimal solution of (P). To be more precise, it
was shown in Barros et al. (1994) that under some reasonable assumptions it is
possible to relate an optimal solution zx; of (P,(y,)) to an optimal solution Yy
of (Qe(y,))s With (P)) denoting the parametric problem of the Dinkelbach-type
algorithm (Crouzeix et al., 1985), i.e.

F()) = inf {max{fz( ) — /\gi(sc)}}. )

zeX



USING DUALITY TO SOLVE GENERALIZED FRACTIONAL PROGRAMMING PROBLEMS 143

Moreover, by the convexity/concavity assumptions on f, g and invoking von
Neumann’s minimax theorem it can be shown that the parametric problems (Q.(y, )
and (P(y,)) provide the same optimal objective value, i.e.

F (yk41, ¢(yr)) = Fc(ye))-

The dual algorithm (Barros et al., 1994) is now described by the following proce-
dure:

ALGORITHM 1.

Step 0.

Take yo € X, compute c(yo) = mingeyx %%((—3 andletk :=1;

Step 1. ’

Determine y;, := argmaxyezF(y, c(Ye—1);

Step 2.

If F(yk, c(ye-1)) =0
Then y;_1 is an optimal solution of (Q) with value ¢(yx_;) and Stop.
Else GoTo Step 3;

Step 3.

Compute c(yx), let k :== k + 1, and GoTo Step 1.

The above algorithm converges at least linearly, and sufficient conditions estab-
lishing superlinear convergence can also be found in Barros er al. (1994).

It is interesting to remark that Algorithm 1 works in a similar way as the
Dinkelbach-type algorithm (Crouzeix et al., 1985), which can be summarized as
follows:

ALGORITHM 2.

Step 0.

Take z¢ € &, compute A| := max, ¢, %(% and let k .= 1;

Step 1.

Determine zj, := argmin, ¢y {max,c {fi(z) — Aegi(z)}};

Step 2.

If F(Ax) =0
Then z, is an optimal solution of (P) with value A, and Stop.
Eise GoTo Step 3;

Step 3.

Let Mgy := maX;g; %, let k := k + 1, and GoTo Step 1.

Observe that both algorithms proceed in a comparable way. Indeed, at Step 1 a
parametric problem must be solved to check in Step 2 whether or not optimality
was reached. If the present iteration point is not optimal, then the next iteration point
is given by an optimal solution of the parametric problem solved in Step 1. Using
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this point, a “better” approximation of the optimal objective value is computed in
Step 3. On the other hand, an essential difference between both algorithms is that
the Dinkelbach-type algorithm constructs a nonincreasing sequence {\;. : k > 1}
approaching the optimal objective value ¥(P) from above, while the dual algorithm
constructs a nondecreasing sequence {c(yg) : k > 0} approaching ¥(P) from
below.

The scaled versions of the above mentioned algorithms can be found, respec-
tively, in Barros et al. (1994) and Crouzeix et al. (1986). According to Barros et al.
(1994) the scaling of the parametric problem appears to be only effective for the
Dinkelbach-type algorithm. In fact, the scaled version of the dual algorithm pre-
sented in Barros et al. (1994) does not appear to produce significant improvements
on the behavior of the original dual algorithm. Moreover, according to Barros
et al. (1994) the original version of the dual algorithm appears to dominate the
scaled version of the Dinkelbach-type algorithm, the so-called Dinkelbach-type-2
algorithm, both in terms of iterations and execution time.

3. Using Duality to Solve Generalized Fractional Programs

Apart from the recent approach in Barros er al. (1994), most of the algorithms
that solve generalized fractional programs are “primal” algorithms which do not
solve the associated standard dual problem. This may be justified by the fact that
the standard dual of a convex generalized fractional program looks much more
difficult to handle than its primal counterpart. An exception is given by generalized
linear fractional programs for which the dual under certain conditions is again a
generalized linear fractional program (Crouzeix et al., 1983, 1985; Jagannathan
and Schaible, 1983). This lead Crouzeix et al. (1985) to consider solving the dual
problem via the Dinkelbach-type algorithm, whenever the unbounded feasible set
X makes it impractical to solve the primal problem directly.

In this section we will show that in spite of the “awkward” form of the standard
dual problem of a generalized fractional program we can construct an efficient
algorithm to solve the dual problem. This algorithm is based upon the approach
proposed by Barros et al. (1994) and generates a sequence of iteration points
converging from below to the optimal objective value 9(P). After introducing this
new algorithm for the nonlinear case, we will specialize it to the linear case and
show that it corresponds to the Dinkelbach-type algorithm applied to the standard
dual of a generalized linear fractional program. Moreover, we will show how the
standard dual of a generalized linear fractional program can be directly derived,
using the general duality results for the nonlinear case.

3.1. NONLINEAR CASE

In this section we will assume that (P) is a convex generalized fractional program-
ming problem, where the feasible nonempty set X is given by X := {z € S :
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h(z) < 0}, with S C K a compact convex setand h : R™ — R" a vector-valued
convex function. Moreover, the continuous functions f;,g; : X — R, 7 € I,
verify either of the following convexity/concavity assumptions:

(C1) For every ¢ € I, the function f;: K — R is convex on S and nonnegative
on X and the function g;: KX — R™ is positive and concave on S;

(C2) For every ¢ € I, the function f; : X — R is convex on S and the function
gi : K — R™ is positive and affine on S.

Clearly, under these conditions the set X’ is compact and convex and therefore
(P) has an optimal solution with #(P) finite. Observe also that, due to the convexi-
ty/concavity assumptions (C1), (C2) we also have that #(P) is nonnegative if g is
a positive concave vector-valued function.

In order to simplify the notation, we will introduce f(z) " := (fi(z), ..., fm(z))
and g(z) " := (g1(2), .- ., gm(2)).

An easy direct approach to derive the dual problem of (P) is given by Jagan-
nathan and Schaible (1983). Due to S compact one can apply a generalized Farkas
lemma (Bohnenblust et al., 1950) to a system of convex inequalities. This gives
rise to the standard dual problem of (P) given by

sup {t cty T g(e) <y flz)+ 2z hz),teR,z€S,ye D, z> 0}

withE:= {y € R™ : y > 0,Z;cry; = 1}. Since g;(z) > 0 for every z € S and
¢ € I the above problem can be rewritten as

y'f(z)+ 2" h(x) }
yTg(x) '

Moreover, due to S compact and y " g(z) > O for every z € S, one may replace
inf by min. Observe that, although (D) equals 9(P) (Crouzeix et al., 1983; Jagan-
nathan and Schaible, 1983) there might not exist an optimal dual solution.

The similarities in structure between the standard dual problem (D) and the
“partial” dual problem introduced in Barros ef al. (1994) suggest that it is possible
to directly solve (D). In this case, we need to guarantee that (D) has an optimal
solution. Hence, we will impose a Slater-type condition on the set X'

SUPyex 20 {infa:es (D)

Slater condition

Let J denote the set of indices 1 < j < r such that the jth component h;
of the vector-valued convex function h : R™ — R" is affine. There exists some
x belonging to the relative interior 1i(S) of S satisfying hj(z) < 0,5 € J and
hj(z) < 0,5 € J.

Using now the indirect Lagrangian approach in Craven (1988), the following
result is easy to show.
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PROPOSITION 1. If the Slater condition holds then the parametric problem
SUPyex,2>0 {ggg{ny(x) + 2 h(z) — /\yTg(w)}} (D)

has an optimal solution and 9(D)) = 9(Py) for any X if g is a positive affine
vector-valued function on S or for A > 0 if g is a positive concave vector-valued
function on S. Moreover, the dual problem of (P) has an optimal solution and
(D) = I(P).

Proof. By Theorem 28.2 of Rockafellar (1970) the Lagrangian dual (D)) of the
parametric problem (P,), given by

S {glelg {v7f(2) + 2 h(z) - /\yTg(:v)}}

has under Slater’s condition an optimal solution for every A € R if the functions
gi, © € I, are positive and affine on S or for every A > 0 if the functions g, ¢ € I,
are positive and concave on S. It also follows that #(D)) = ¢(P,) and this proves
the first result.

Using the above result and Theorem 4.1 of Crouzeix et al. (1985) we have for
A« = 9(P) that

0=9(P.) =0(Dr) = max {ggg {y7#(z)+ 2 Th(z) - ,\*yTg(:n)}}

Hence, there exists some y, € ¥ and 2, > 0 such that
. T T T _
min {v] f(@) + 2T h(2) = 2yl g(2)} =0
and

glelg {ny(ac) + 2 h(z) — /\*yTg(x)} <0 (5)

for every y € ¥ and z > 0. By the above equality and g(z) > O forevery z € S
we obtain that

Ay = min {y*Tf(x) + Z;rh(x)}

z€S v, g9(z)

On the other hand, from (5) it follows that

{ny(x) + zTh(ﬂS)}

v g(z)

A« > min
€S

forevery y € X and z > 0. Hence, by the previous equality and inequality the dual
problem (D) has an optimal solution and A, = J(P) equals 9(D).
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Since we are interested in an algorithm to solve the standard dual problem (D) we
will assume from now on that the Slater condition holds. Hence we can rewrite the
standard dual (D) as

d
e (y,2)

where the function d: £ x R’ — R is given by

.y f(@) +z"h(z)
4y, 2) = min y' g(z)

(6)

with R denoting the nonnegative orthant of R". Notice that (6) corresponds
to a single-ratio fractional programming problern. Clearly, by the positivity of
g on S and S compact the function d is continuous on ¥ x R, see Lemma
3.1 of Pshenichnyi (1971). Moreover, the function d is semistrictly quasiconcave
(z)+: T h(z)

v g(z) ’
see Avriel er al. (1988). Hence, (D) corresponds to a quasiconcave optimization

problem, where a local maximum is a global maximum, see Avriel et al. (1988).
Notice, since the Slater condition holds we know that this maximum is attained,
i.e. there exists some (y, z) € ¥ x R, such that d(y, z) = 9(D).

Due to the similarities between the standard dual (D) and the “partial” dual (Q)
we will use the approach described in Barros et al. (1994) to derive a new algorithm
to solve (D). Therefore, we will start by relating the parametric problems associated
with (D) and with (Q) and hence, we introduce the value function G : R — R
associated with (D) given by

. . - . . - . T
since it is the infimum of semistricly quasiconcave functions z +— % !

G\ = yerg?zxzo Gy, z, )

with
Gly,20) = min {y" f(z) + 2" h(e) ~ W g(a)}.

LEMMA 2. For A € R if g is a positive affine vector-valued function on S or for
A > 0 if g is a positive concave vector-valued function on S

G(X) = max F(y, ). (7
yEeD
Moreover, § is an optimal solution of (Q») if and only if there exists some 3 > 0

such that (g, 2) is an optimal solution of (D),).
Proof. Remember by definition we have that

G(\) = ryneazx r:nza())( {;rgg {ny(a:) + 2" h(z) — /\yTg(:r)}} .
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Considering z > 0 as the vector of Lagrangian multipliers associated with the
constraints h(z) < 0, we obtain under the Slater condition by Theorem 28.2 of
Rockafellar (1970) that

F(y,) = min {y" f(z) - 0" g(a)}

— : T _ T
= maxmin {y"(f(z) — Mg(2)) + 2 h()] (8)
and hence it follows that G()\) = max,ex, F(y, ).

To verify the second part, notice that, if § € ¥ is an optimal solution of (Qy,),
then by (7) and (8) there exists some £ > 0 satisfying

Jmax Gy 5 ) = F(g,\)=max {min {37 (£(s) ~Ag(a)) +5Th(z) } |
SRR

and so (4, z) is an optimal solution of (D, ). Moreover, if (3, 2) is an optimal solution
of (D)), then it follows by weak duality and (7) that

max Gly,\)=G(3, 2 N)=min {37 f(@)+2 h(z)= M g(e) } F(3, )

and this shows that g is an optimal solution of (Q)).

Notice from the above lemma that 2 is the optimal Lagrangian multiplier vector
associated with the constraints ~(z) < O of the optimization problem defined by
F(9, 2.

In spite of the different formats of the duals (Q) and (D) they have by Lem-
ma 2 equivalent associated parametric problems, if the Slater condition and the
convexity/concavity assumptions, (Cy), {Cz), hold. Moreover, since it was shown
in Barros er al. (1994) that the parametric problems associated with (P) and (Q)
are equivalent, using the above lemma, this relation can now be extended to the
parametric problem associated with (D). Hence, this important relation also implies
that for (yx, 2«) an optimal solution of (D, ) then the function G, R— R
given by

G(yk,:k)()‘) - G(yka 2, )\) (9)

approximates the “primal” parametric problem function F' at A, from below and
G(yp.z)(Ae) = F(A). Hence, the root of the equation Gy, -, 1(A) = 0 given
by d(ys, 2&) yields a lower bound on 9¥(D). Before introducing the algorithm to
solve (D) we will briefly discuss how to compute d(yy, zx). Computing d(yx, 2 )
corresponds to solving a single-ratio fractional programming problem, which can
be easily done using the classical Dinkelbach algorithm, see Dinkelbach (1967).
However, the efficiency of this procedure depends mostly on whether the associated
parametric problem has a *nice” form. Clearly, if assumption (C;) holds then the
associated parametric problem corresponds to a convex problem. On the other hand,

Ykr=k )
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if assuniption (C1) holds the parametric problem is convex only if the parameter
A is nonnegative. Nevertheless, in this case, ¥(P) > 0 and hence we are only
interested in (y, z) € £ x R such that d(y, z) > 0. Observe that, in this case (6)
is also a convex single-ratio fractional programming problem.

In the same way as for the dual algorithm (Barros et al., 1994) it is easy to
show that the sequence {d(yx, k) }£>1 is strictly increasing. In fact, Lemma 3.1 of
Barros et al. (1994) can be extended to this case as follows.

LEMMA 3. For (9,2) € £ x R, we have
Ua(9,2)) ={(y,2) € T x R} : G(y,2,d(§,2)) > 0}
and
Ua(9,2)) ={(y,2) € T xR : G(y,2,d(§,2)) = 0}
where Uy(d(§, 2)) and U3 (d(y, z)) denote the upper respectively the strict upper

level set of the function d at (g, 2).

The proof of the above lemma can be found in Barros (1995).
We can now propose the “dual-type” algorithm to solve (D):

ALGORITHM 3.
Step 0.
If assumption (C)) holds
Then Let \g :=0
Else Take yg € 32, zg > 0O;

Compute Ao := d(yo, z0) = mingeg L& 20 1),
Yy 9(z)
Letk:=1;
Step 1.
Determine (yk, zx) = argmax,es ,>0G (Y, 2, Ae—1);
Step 2.
IfG(Ak—1) =0
Then (yx—1, 2x—1) is an optimal solution of (D) with value A,_| and
Stop.
Else GoTo Step 3;
Step 3.

Compute Xy, := d(yx, 2x), let k := k + 1, and GoTo Step 1.

Although this new dual algorithm is similar to the one presented in Barros et
al. (1994) the derivation of the convergence results is more “complex™. This is
mainly due to the fact that the feasible set of the standard dual problem (D) given
by ¥ x R is no longer compact as in the case of (Q).

To prove the convergence of this new dual algorithm we need to investigate
the behavior of the approximation function Gy, .,y : R — R. In a similar way



150 A.1 BARROS ET AL.

as in Barros et al. (1994) it can be shown that this function is a concave lower
approximation of the function F. Observe that by Thecrem 23.4 of Rockafellar
(1970) the subgradient set 0(—Gy,))() of the convex function -G, ) : R —
‘R at the point A is nonempty. Remember that p € R is a subgradient of the function
—Gy,;) at the point A if and only if

G(y,::) (’\ + t) < G(y,z) (’\) —tp (10)

for every ¢t € R. The next result characterizes the subgradient set 9(—G/, .))(}).
Before mentioning this result we introduce for fixed (y, z) € X x R, the set S(y,z)
(A) of optimal solutions of the optimization problem

min {y" f(z) + 2Th(z) = XyTg(z)}.
Sy = {z €5 :yT(f(&) - Ag(x)) + 2" h(z) = GV} D

Clearly, this set is nonempty. Also, by the continuity of the vector-valued functions
f, g and h it must be closed, and thus by the compactness of S and S, .y) (A\) C S
it is compact. Finally, if A > O then the function z — y' (f(z) — Ag(z))+ 2T h(z)
is convex due to the convexity and concavity of f, h and g respectively, and this
implies that S(y’z)(/\) C S is also convex for every A > 0. Observe that the above
result also holds for any A, if the functions g; are positive and affine on S for every
1el.

LEMMA 4. For every fixed (y, z) € £ x RY, and X € R follows that

— : T [T .31
a(_G(y,z))(/\) - Iimeg(lzlil)(/\) {y g(m)} ,ZGSI'E?:(A) IR AN

The proof of the above lemma is omitted since this result is a special case of a
more general result given by Theorem 7.2 of Rockafellar (1983) or Theorem 4.4.2
of Hiriart-Urruty and Lemaréchal (1993). However, an easy proof of this special
case can be found in Barros ef al. (1994).

Observe, since S is a compact set and g is a positive and continuous vector-
valued function that

§ = min rfg}lg(z) >0 and A := r;leaé(rlnea[xgi(z) < +00. (12)

This implies using y € 3 that
=Gy, (A) € [6,A]

forevery (y,z) € ¥ x R, and A appropriately chosen.
Denote now by k* the number of times that Step 1 was executed by the algo-
rithm. Clearly if k* is finite it follows that G(ygx, zg+, d(yk+_1, zgx—_1)) = 0, while
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for k* = +oo the algorithm does not stop. Before mentioning the next result we
introduce

Ax(y, 2) == max {y"g(x) : @ € Sy, (d(e, 24)) |

and

y;cer(:c) + z};th(;c) }
y;;r+1g(w)
= min {y{419(2) : © € Sgyy, ) (AGet1, 2041)) }

. T L .
Sk+1 : = min {yk+1g(m) Lx = argmingcg

Observe that by Lemma 4 we have
Ak(ya z) € 8(_G(y,z))(d(yka Zlc)) and
k1 € O(—Gyp1zns)) (@Yt 15 2641))-

THEOREM 5. The sequence (yi,2),0 < k < k*, does not contain optimal
solutions of (D) and the corresponding function values d(y, zr),0 < k < k* are
strictly increasing. Moreover, if k* is finite, then d(yi~, zk+ ) = 9(P) while for k*=
+00 we have

lim d(yg, 2,) = 3(P).
koo

Finally, if k* = 400 and (y«, 2«) is an optimal solution of (D), then

_ Ak(y*> Z*)
Sk+1

< (1 — %) ((P) — d(yr, zx))

holds for every k > 0, with § and A defined by (12).
Proof. Using Lemma 3 it follows that G(yk41, zk+1, d(yk, 2¢)) > 0 if and only
if (yx, &) is nonoptimal. Moreover, by the same lemma we obtain that

I(P) — d(yir1 zer1) < (1 ) O(P) - dlye, =) (13)

d(Yi+1s 2kt1) > A(Yks 28)

if (Yk, zx) is nonoptimal, and so the first part of the theorem is proved.

Consider now the case with k* finite. Since the algorithm stopped in a finite
number of steps we must have G (yg«, zx-, d(yr+_ 1)) = 0 and using again Lemma 3
it follows that (yy~, zx+) solves (D). Hence, by Proposition 1 we have d(yg«, zi+) =
J(D) = I(P).

To verify the last part of the result, notice that d(yy, 2;),k > 0, is strictly
increasing for k* = +o0, and since d(y, zx) < 9(D) < oo for every k > 0, it
must follow that limg1eo d(yk, 2x) exists and is finite-valued. Moreover, by Lemma
4 and (10) we obtain for every optimal solution (yx, 2z4) of (D) that

G(y* ,z*)(d(y*a Z*)) - G(y*,z*)(d(yk, zlc))
< _(d(y*’ z*)"‘d(yk’ zk))Ak(y*’ z*)'
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Since Gy, -,)(d(yx, 2x)) = O this implies that

G(yk+1,zk+1)(d(yk7 Zk)) = y€rgazx>0 G(y,z) (d(yk’ Zk)) 2 G(y*,Z*) (d(yka zk))
> (d(y*,z*) —d(ykazk))Ak(y*,z*)- (14)
On the other hand, applying again Lemma 4 and (10) we obtain
G(yk+1»3k+1)(d(yk’zk)) = G(yk+1,2k+1)(d(yk’ 2k))
—G(yk+17lk+1)(d(yk+1’ Z’“'H))
< (@(Yk+15 2k+1) — Yk 2)) Okt 1.

The above inequality and (14) imply that

(A(Ykt1, zk41) — AWk, 26)) 01 > (A(Ys 24) — A(Yks 28)) Ak (Yuy 24). (15)

Since Ag(Ys, z.) and d | belong to the interval [§, A] it follows by (15) and the
existence of limy1o d(ys, 2¢) that

lim d(ye, 26) = d(yx, 24) = (D) = 9(P)

Moreover, by the same argument we obtain

HP) ~ d(Yk+1, 2k+1) = O(P) — d(yk, zk) + d(Yk, 2k) — A(Ykt1, 2kt1)

< (1- %ﬂ)) (9(P) — d{yh, 24))
< <1 - %) ((P) — d(yk, zk))-

Clearly, by inequality (13) this algorithm converges at least linearly. In order to
improve this convergence rate we need to impose a “stronger” constraint qualifica-
tion than the Slater condition. Therefore, we will consider the following so-called
strong Slater condition (Hiriart-Urruty and Lemaréchal, 1993):

Strong Slater condition
There exists some & € 1i(S) satisfying h(Z) < 0.

This condition is by the continuity of the vector-valued function h equivalent to the
requirement that there exists some & € 9 satisfying h(#) < 0. We can now establish
the following simple condition which improves the convergence rate. However,
before mentioning this result we will show that the strong Slater condition implies
the existence of an accumulation point of the sequence {(yx, zx)}x>0 generated
by Algorithm 3. Observe that the existence of such an accumulation point is not
immediately clear due to z; > 0 forevery k& > 0.
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LEMMA 6. If the strong Slater condition holds, i.e. there exists some & € S
satisfying h(&) < 0, then the sequence {(yk, zk) }k>0 has an accumulation point
(Y, z+) and this accumulation point is an optimal solution of (D). Moreover, if (D)
has a unique optimal solution (Y., z.) then iMoo Y = Ys and limgroo 2k = Za.

Proof. Suppose that the sequence (yx, zx) € £ x R/, has no convergent subse-
quence in ¥ x R" , &k € K. This implies, since ¥ is a compact set, that there exists
a subsequence K| C K with

lim =y,and lm zill = 0o 16
keKl,kTooyk Y keKl,kToo” k“ (16)
However,

Lyl f@) + 2l () oyl F(E) + 2] h(z)
d(ylm zk) = min T < T 7=
z€S Yi 9(z) Y 9(2)
and due to g(&) > 0, h(Z) < 0 and (16) it follows that
li d(yk, = —00.
ke}\,llf’I]:Too (ks 21) S
However, the sequence d(yk, 2x) is strictly increasing by Theorem 5 and this
yields a contradiction. Hence the sequence {(y, zx)}x>0 has an accumulation
point (y«, z.) € & x R.. Applying again Theorem 5 and using the continuity of
the function d we obtain that such an accumulation point (y., z.) is an optimal
solution of (D), which concludes the proof of the first part of this lemma.
The second part of this lemma is easily verified by contradiction.

Using the previous lemma we can establish the following superlinear conver-
gence rate result.

PROPOSITION 7. If the strong Slater condition holds and for every optimal
solution (Y., z.) of (D) the optimization problem
.y, f(z) + 2, h(z)
min
zeS  ylg(z)
has a unique optimal solution then the new dual algorithm converges superlinear-

ly.
Proof. If for all optimal solutions (y,, z.) of (D)

Dy

A
lim sup (1 - M) =0
kToo 5k‘+1
then, from Theorem 5, it follows that the convergence rate of the new dual algo-
rithm is superlinear, and so the result is proved. Let 0o, := limsup,;., Sx+1-

By the definition of lim sup there exists a subsequence K C N such that §,, =
limgek koo Ok+1. Moreover, by Lemma 6 it follows that the sequence { (v, zx) }x>0
admits a subsequence K| C K such that limeecg, ko0 (Ykt1, 2kt+1) = (Y, 24)
with (y.«, 2«) an accumulation point, and this accumulation point is an optimal
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solution of (D). Hence, consider the sequence 1 —ﬁ“—é%:’l—zil for such an accumu-

lation point (y«, z«). It is easy to verify that the point-to-set mapping (y, z) —
9(—=G'(y,-)){d(y, z)) is upper semicontinuous. Since

Ok+1 € 8(_G(yk+1~3k+l))(d(yk+1’ Zkt1))s kell(ilnlgToo dk+1 = 6o and

kefl(ll%oo(ykﬂ, Zkt1) = (Yns 2¢)

we obtain that

boo € (=G ((y, ,2))(d(uk, 2k))- (17)
On the other hand, it is clear by Lemma 4 that

Ak(yss 24) € 0(=Gy, ) (d(Yk, 2k))-

Moreover, since the increasing sequence d(yy , z) converges from below to d(y., 2.),
it follows by the convexity of the function -G, . ) and

Ak(y*a Z*) € 8(_G(y*,z*))(d(yka Zk:))
that
Ak(y*,z*) < Ak-}-l(y*s Z*) <...<a,witha, € 8(_G(y*,g*))(d(y*72*))-

This implies limgqoo Ak (Yss 2+) =1 Aoo(Yx, 24) exists and by the upper semiconti-
nuity of the point-to-set mapping A = 8(—G/_..))(A) we obtain that

Boolyns 1) € (= Gy, 1)) (d(un, 2.))
Since we already observed that
Ao (Y, 2) < ax forevery ax € 3(=Gy, ) (d(yx, 24)),
it must follow by Lemma 4 that
A > Dgo(ye, 22) = min{yl g(z) : 2 € Sy, 1) (d(tn, 2.)) } > 6> 0. (18)

Observe now that by (17) and (18) we have

0< limsup<1_w> -1 liminfé_’cgﬁ_z*_)
kToo Skt1 ktoo I
A00 O3 “ok

and hence, if the optimization problem (D, } has aunique optimal solution, implying
by (17), (18) and Lemma 4 that 0 < § < Ay (Ys, 24) = doo < A < 00 the desired
result follows.
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In order to guarantee the uniqueness condition expressed in the above propo-
sition we will consider the subclass of quasiconvex functions usually known as
strictly quasiconvex, see Avriel et al. (1988). Observe by Proposition 3.29 of Avriel
et al. (1988) that min,cg ¢ (x) has a unique optimal solution if ¢ : K — R is
strictly quasiconvex and continuous. The next corollary establishes sufficient con-
ditions on the functions f; and g; to ensure that the convergence rate of Algorithrn
3 is superlinear.

COROLLARY 8. If the strong Slater condition and either one of the following
conditions
(1) f: K — R™ is strictly convex on § and nonnegative on X and g - K —
R™ is positive and concave on S,
(2) f: K — R™ is convex on S and nonnegative on X and g : K — R™ is
positive and strictly concave on S,
(3) f: K — R™ is strictly convexon Sand g : K — R™ is positive and affine
on$
hold then the new dual algorithm converges superlinearly.

Proof. We will prove the result only for (1) and (2). For (3) the result follows
easily. By Proposition 7 and the properties of strictly quasiconvex functions it
is sufficient to show that for any optimal solution (., z.) of (D) the function
1 1 K — R given by

y. f(z) + 2] h(z)
lg(z)
is strictly quasiconvex on S. By Proposition 1 we have that

_y, f(z) + 2] h(x)
min
z€S y) g(z)

P(z) =

equals 9(P) > 0, and so it follows that z — y. f(z) + 2] h(z) is nonnegative on
S. This yields for every z;, 2 € S with z] # x; and 0 < X < 1 that

YAz + (1 = N)x2)
_ A f(@) + Azl h(n) + (1= Ny f(z2) + (1= Nz h(za)
Ayt g(zy) + (1 = Nyl g(x2)
Ayl glan) o) (1= \)yTg(ay) Lot eThie:)

s g(z1) s g(ir2)
Ayl g(z) + (1= Ay g(z2)
< max { v, flz)) + th(wl)’ y:(mz) + 2z, h(x)
yl g(zy) yd g(z2)
= max{y(z;),¥(z2)}

which completes the proof.
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The above conditions to ensure a superlinear rate of convergence resemble the
ones needed to establish the same result for the dual algorithm in Barros et al.
(1994). However, for the new algorithm the strong Slater condition is additionally
required. On the other hand, the new algorithm proposed may be more suitable
whenever the feasible set X' is formed by “easy” and “difficult” constraints. Clearly,
in this case by grouping in S the “easy” constraints yields an easier single-ratio frac-
tional programming problem. However, the practicality of this algorithm depends
mostly on how Step 1 is solved. Since (D)) and (Q») are equivalent problems,
we will use the same type of approach developed in Barros et al. (1994) to solve
(@Qx)-

As observed (D)) corresponds to a Lagrangian dual of (P,) and thus we can
relate an optimal solution of x4 of (Py,) to an optimal solution (Y441, Zk+1) of
(D ,\L) To derive this relation, we will assume additionally that f;, g,
t=1,...,mand h; : R" — R;,j = 1,...,s, are also differentiable func-
tions and that the nonempty compact convex set S is given by

S:={zeR":p(z)<0,l=1,...,5}
where p; : R™ — R,l=1,...,s, are convex and differentiable functions.
Clearly (Py,) is equivalent to the following convex programming problem
min ¢
t.oig(z)—t<0 Vi=1,...,m
hj(z) <0 Vji=1,...,r
p(z) <0 Vi=1,...,s

with gi(z) = fi(®) — Akgi(z),7 = 1,...,m. Let x4 and tk41 be an optimal
solution of the above problem, and define I' := {1 < i < m : qi(zk+1) = tht1 }
J ={1<j<r:hj(zgs;) =0tand L' := {1 < < s: pi(xe41) = O}.
Since the Slater condition holds the Karush—-Kuhn—Tucker conditions ensure the
existence of nonnegative scalars u;;i € I, v ] € J' and &;;1 € L' satisfying

LierwiVa(Tre) + Tie i Vhi(@ry1) + Ziep&Voi(zet1) =0 (19)
Eiellui =1 (20)
(upryvg,épr) 2 0. @2n

Notice that the set I’ is nonempty, due to the optimality of (€441, tk41). It is now
possible to relate the scalars u;,7 € I' and v;,j € J' to an optimal solution of

(D)

LEMMA 9. An optimal solution (3, 2) of (D), ) is given by
9‘_{ ifigr A__{OifjgéJ’
;= =

u; if e el v if jeJ
where u; and v; solve the system (19), (20), (21).
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Proof. From (20) and (21) it follows that § belongs to ¥ and 2 > 0. Moreover,
by the definition of I’ and J' we obtain that

Dier§ii(@r41) + Sje 2R (Tha1) = L1

Hence, since (D), ) is the Lagrangian dual of (P),), it follows using the previous
equality, that
Bier§igi(@r+1) + Bjepzihi(wr1) = minmax{fi(z) — Axgi(z)}
= G Ak).
yGIg?;ZXZO (ya 2 k)

It is left to show that (§, 2) is an optimal solution of maXyex >0 G (¥, 2, A¢). Since
mingcs{9 " g(x)+ 2T h(x)} is a convex optimization problem, the Karush-Kuhn—
Tucker conditions are sufficient (Hiriart-Urruty and Lemaréchal, 1993). Clearly,
by the definition of (§, 2) and (19), (20), (21) the vector x4 satisfies these
conditions, and thus z. is an optimal solution of minges{§ ' ¢(z) + 2 h(z)}.
Hence, § € X, 2 > O satisfy

max G(y,z, M) = Y_ Jigi(zes1) + Y, 2ihj(zes1)

yEX,z>0 ier jer
T T
= min{§ q¢(z) + 2" h(z)}
z€S
= G(@a 27 /\k)

and so (g, 2) solves (D), ).

This lemma provides an “easy” procedure to solve Step 1, and thus, to obtain the
next iteration (yx+1, 2x+1) of Algorithm 3. However, using this approach, a convex
problem where the full set of constraints of A" is present has to be solved in Step 1.
Hence, the apparent advantage of this method over the dual method, whenever the
feasible set A" is formed by “easy” and “difficult” constraints, is here annulled.
Notice that the above result “extends” Lemma 3.4 in Barros et al. (1994).
Moreover, we also know by Lemma 2 that (Y41, 2k+1) is an optimal solution of
(D, ) if and only if yg41 is an optimal solution of (@, ). At the same time, it
follows that zx belongs to argmax {G(yk+1, 2, Ak+1) : # > 0}. This observation
and the next result permit to rank the next iteration value A, of both methods.

LEMMA 10. Assume that the Slater condition and either (C1) or (C,) holds
then, d(y,z) < c(y) for all (y,z) € ¥ x R!.. Moreover, for (yr+1,2k+1) an
optimal solution of (Dy, ) and yx+1 an optimal solution of (Q), ), c(yx+1) equals
d(Yk-+1, 2k+1) if and only if 2,1 belongs to

argmax{G(Yk+1, 2, A(Yk+1, 2k+1)) : 2 = O}
Proof. Using the results of Dinkelbach (1967), we have

0 = min {y"(f(2) - cv)g(2))}
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and
0 = min{y"(f(2) - dy, 2)g(z)) + 2" h(x)}
< min {y"(f(e) - d(w, 2)g(a)) }

Using again Dinkelbach (1967), the first result follows. For (yx11, 2k+1) being an
optimal solution of (D, ) it follows by Lagrangian duality that the above inequality
is actually an equality if and only if 2z4; belongs to

argmax{G(yr+1, 2, &(Yk+1, 2k+1)) : 2 > O}.

Hence, we obtain that d(yx+1, 2zx+1) = ¢(y¥x+1 ), and the result is proven.

The above lemma raises the question if in practice the situation d(yx+1, zk+1) <
c(yr+1) occurs frequently. According to our computational experience this situation
does occur at the beginning of the application of the algorithms. This is to be
expected in view of Lemma 10. Observe also that the computational effort required
to compute d(yx+1, zk+1) can be expected to be less, when S has “easy” constraints,
than computing ¢(yg41)-

3.2. LINEAR CASE

We will now specialize the results derived in the previous section to the linear case.
Hence, consider the generalized linear fractional programming problem defined
by
fi(z) = a;.x + a;, gi(z) := bj.z + B; Vi € I and
X = {zeR":Cz<Ly,z2>0}

where ¢;. and b;, denote respectively the ith row of the m x n matrix A and B,
al =[at,...,am), BT = [Bi,...,Bm) and C a ¢ x n matrix and v € RI. We
will also assume:

(A1) Feasibility assumption. X C R"™ is nonempty and bounded;
(Ap) Positivity assumption. Bx + [ > O forall z € X.

Thus our generalized linear fractional programming problem is given by

min {max M} . P)

zeX | iel by x + G;
Consider also the following optimization problem:

a;. T+ ;T }

min max ——— P
(=,20)€ X { i€l b,z + Bizo (Po)
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with Xp = {(z,xo) e Rt Cz < Yzo, X125 + 20 = L,z > 0,20 > 0}.
Before analyzing the relation between the above optimization problem and (£),
we will introduce the definition of equivalent problems (Craven, 1988).

DEFINITION 11. The two optimization problems
max{F(z) : z € X}and max{G(z) : z € Y}

are called equivalent if there exists a one-to-one mapping ¢ of the feasible set X
onto Y such that F(z) := G(¢(z)) foreachz € X.
It is now possible to relate the two optimization problems (P) and (P).

LEMMA 12. If(A)) and (Az) hold, then (P) and (Py) are equivalent problems.

Proof. In order to exhibit a one-to-one mapping of X onto Xp, we will first
show that for any (z,zo) € Ap, the scalar xp can never be zero. Suppose that there
exists some (z,zo) € Ap such that zy equals 0. Thus Cz < 0 and E;;la:]- =1
with z; > 0,5 = 1,...,n. It follows now for any w € X and t > O that

w++tex > 0and Cw +tCe < 7.

Hence, w + tz € X for all t > 0 which contradicts the assumption (A;) that
X is a bounded set. Consider the mapping ¢ of X into Ay given by ¢(z) =

EE,‘I—I,(Q:, 1). Clearly, the image of X under ¢ is contained in X,. Moreover
5=1%]

for all (z,z0) € Ap there exists a unique point in & given by X and thus ¢ is a
one-to-one mapping of X onto &y. Also, it follows easily that the objective value
of (P) at z € X equals the objective value of (Fp) at ¢(z) which concludes the
proof.

From the above lemma it follows that the denominators of (Py) are always positive
for (z,z9) € Xp. On the other hand, by assumption (A;) we obtain that Xj is
a nonempty bounded set. Therefore, if assumptions (A;) and (A;) hold then the
optimization problem (Fp) corresponds to a standard generalized linear fractional
problem.

Observe also that the mapping used 1n the proof of Lemma 12 is equivalent to
the Charnes and Cooper transformation (Charnes and Cooper, 1962). Therefore,
Lemma 12 is comparable to the results derived in Chamnes and Cooper (1962)
and in particular to the proof of equivalence between the different problems.
However, while the Chamnes and Cooper transformation is used to reduce a standard
fractional linear programming problem into a linear programming problem, the
transformation used in the context of Lemma 12 maintains the structure of the
original problem.

The transformation of (P) into (Fp) will enable to apply directly the results
derived for the nonlinear case in Section 3.1 to (Pp). Indeed the feasible set of (Pp)
can be decomposed into the convex cone {(z,zo) € R"*! : CTz < ya0} and the
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compact convex set Sg 1= {(z,zp) € R+ : zo+E7_z; = 1,2 > 0,20 > 0}.In
order to derive the dual problem of (Pp) the additional assumption Blz+ Bxog >0
forall (z, o) € Sp is required. Observe this is guaranteed by the stronger positivity
assumption (A%) B > 0,8 > 0, used in Crouzeix et al. (1983, 1985); Jagannathan
and Schaible (1983). We can now state the dual of (Fp):

T T _
max e Y (Az + azo) + z' (Cz — yxp)

D
y€Z,220 (z,20) €Sy yT(BGU + Bzxo) o)

formed by the constraints related to the original problern. The new algorithm
described in the previous section constructs a sequence (yx, 2x) € ¥ X R/, with
function values d(yy, zx) approximating from below the optimal objective value
of (Pp). Remember that by Lemma 12 the value 9(FPp) equals 9 (P). Hence, for a
given A the new algorithm solves at Step 1 the parametric problem (Do, ):

: T T T T
A-AB — —
yenrzixzo {(m’ggl)réSO {(y ( )+ 2 C) T+ (y (a—AB) -z fy) xo}}
The next iteration point, (y, z), is given by an optimal solution of the above problem.

It is left to evaluate the value of the objective function d of (Dy) at this point, i.e.

computing d(y, z). In this case, this corresponds to solving the following linear

fractional programming problem:

i y' (Az + axg) + 2" (Cz — y2)
(2,20) €S0 y' (Bz + o)

(22

Observe that the objective function in (22) is a ratio of linear functions, and thus
quasiconcave. Since a quasiconcave function attains its minimum over a compact
convex set at an extreme point (Avriel et al., 1988) it follows that the optimal value
of (22) has the following special form

T T T T
aly—~Tz a.jy+c.jz} 23)

d(y, z) = min { ELR 12% bgy
where a ;, b j and c ; denote respectively the jth column of A, B and C. This obser-
vation implies that (Dg) corresponds to the following generalized linear fractional
programming problem:

T T

_faTy—~Tz . ajytec;z

max_{min{ ——=——"-, min ——e——
yEL,z>0 Bly T1<isn by

which is the standard dual problem of a generalized linear fractional program,
described in Crouzeix et al. (1983, 1985); Jagannathan and Schaible (1983), under
assumption (A}). Observe that the above dual problem can be derived using a
weaker (A[) assumption. In fact in Crouzeix et al. (1983, 1985); Jagannathan and

(LD)
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Schaible (1983) instead of (A|) it is only required that the feasible set should be
non empty.

Crouzeix et al. (1985) discuss how to solve (P) whenever the feasible set X 1s
not bounded. In this case, they show that the Dinkelbach-type algorithm applied
to the standard dual problem (L D) converges and recuperates the optimal solution
value. Therefore, it is appropriate to relate this approach to the new dual algorithm.
Observe that the Dinkelbach-type algorithm applied to (LD) requires solving the
following parametric problem for a given A:

. _ T, T : L AT T
yengixzomm{(a AB) 'y —7' 2 lrgnjgn{(a.] Ab;) y+c_]z}}. (LDy)

However, due to the special form of (22} it follows that the above parametric prob-
lem corresponds to (Dy, ). Also, in the Dinkelbach-type algorithm the next iteration
value is given by (23) and hence the two algorithms are identical. Therefore, the
new dual algorithm introduced in Section 3.1 extends to the nonlinear case the
Dinkelbach-type algorithm applied to the dual of a generalized linear fraction-
al program, as suggested in Crouzeix et al. (1985). Nevertheless, it is important
to stress in order to apply Algorithm 3 it is required that the feasible set X is
compact.

Since for (P) the corresponding set S would be given by the noncompact set
R’ while for (Fp) the associated Sy is compact, it follows that by considering
(Py) instead of (P) the results derived in the previous section can be smoothly
applied to the linear case. Hence, both Lemmas 2 and 10 are valid and show
that although the Dinkelbach-type algorithm applied to the standard dual and the
dual algorithm of Barros et al. (1994) consider the same parametric function, the
next iteration points taken by these two algorithms are different. Observe also
that by specializing Proposition 7 we retrieve a sufficient condition to guarantee
superlinear convergence for the Dinkelbach-type algorithm applied to a generalized
linear fractional program. Indeed, due to the special form of (22), it follows that
(22) has a unique solution if

- aTy* -7z : a;y* + c.—;z*
min { ——————, min ————
Blye  T1<isn bl
is uniquely attained. Therefore, the sufficient condition demands that for each
optimal solution of (LD) only one ratio is active. Observe this implies that at a
neighborhood of the optimal point the associated parametric function is concave,
see Proposition 4.1 of Crouzeix et al. (1985). Hence, in the neighborhood of the
optimum, the Dinkelbach-type algorithm “coincides” with Newton’s method, and
thus its convergence rate is superlinear.

4. Scaled Algorithm

Following the same strategy used to derive the scaled version of the dual algorithm
(Barros et al., 1994) it is possible to construct the scaled version of the new algo-
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rithm introduced in the previous section. Before presenting this variant we intro-

duce for 2, € S the vector-valued functions f*), g*) given by fi(k) (z) := g’: i(ri))
and gf (z) := ﬂ— Again, we will consider a convex generalized fractional
programming problem and assume that the Slater condition holds.
We can consider the optimization problem
dk) D)
x4y, 2) (D)
with
T £(k) T h( )
(k) e | (z)+ 2z h(z
) = min e
and its associated parametric problem given by
k (k
JJmax GP(y, z,3) ®)
with

¢¥(y,z,2) = min {y" (P (@) - 2¥ () )+2"h(s) }.

Let now (yg, 2) be an optimal solution of (D,\ )) with A = d(~ D (yk_r, 21— 1)
ie.

(Yrs 21) = argmax,cy Z>OG(k)(y,z A).
In order to simplify the notation we will use, whenever there is no danger of
confusion, d'(yx, 2;) instead of d'®) (y, z).
It is easy to show that 9(D¥)) equals 9(D). Moreover, it is also simple to
establish an extension of Lemma 2 in terms of the scaled parametric functions.
More precisely it follows that

G*) (i, 25, @' (o1, 26-1))
= max {min {47 (1(a) = (i1, 5-1)s® @) + 2T h(o)} )

y€X,z>20 | z€S

= max {min {yT (f(k)(a:) —d'(ye_1, zk_l)g(k)(a:))}} .

yeLX (zeX

Using the above equality and the convexity/concavity assumptions of the functions
F®), g() for all £ > 0 on S it follows now, by Von Neumann’s min-max theorem
that:

G (e, 2k, d (1, 26-1))
= min {max {yT (f(k)(m) — d'(Y—1, Zk—l)g(k) (z))}}

zeX | yeX

= min {max {f = d' (Yr-1, 20— 1)9(k) (1')}}

zeX | €]
= F®(c/(yg-1))
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with F%) : R — R the parametric function used in the Dinkelbach-type-2 algo-
rithm (Crouzeix ef al., 1986). However, while in the Dinkelbach-type-2 algorithm
x4 1s an optimal solution of the scaled parametric problem (P,S},:_ 1)), the vector z, in
this variant must be an optimal solution of the fractional programming problem:

T (k—1) T
' Y f (z) + z,_1h(z)
ot B = T T R )

The scaled version of Algorithm 3 is described by the following procedure.

ALGORITHM 4.
Step 0'.
If g; for all ¢ € I are concave
Then Let Ap := 0 and take zg € X
Else Take yy € %, 79 > 0;

. TFO(z)+2Th
Compute Ao := d'(yo, 20) = min ¢ g M;W;

Let ; be an optimal solution of d'(yo, 20);

Letk .= 1;

Step 1'.

Determine (yx, zx) 1= argmaxyGE’DOG(k)(y, Zy Ak—1);
Step 2'. -

If G (yg, Ak—1) = 0
Then (yk, zx ) is an optimal solution of (D(k)) with value A and Stop.
Else Goto Step 3';
Step 3.
Compute Ay, := d'(yk, 2x) and let z; | be an optimal solution of d'(yy, 2k );
Let k := k + 1 and GoTo Step 1’.

Similar to Barros et al. (1994) it can be shown that this scaled algorithm
converges linearly, and that the sufficient condition of Proposition 7 also ensures
that the rate of convergence of the scaled version becomes superlinear.

5. Computational Experience

In order to test the efficiency of the new dual algorithm, Algorithm 3 introduced
in Section 3.1, we compared it with the Dinkelbach-type algorithm, Algorithm
2 and the dual algorithm, Algorithm 1. This comparison is also extended to the
correspondent scaled versions of these three algorithms. Therefore, we used the
same test problems as in Barros et al. (1994), i.e. we considered ratios with numer-
ator quadratic functions f;(z) := &' Hix + a] ¢ + b;, and denominator linear
functions, g;(z) := ¢/ = + d;. The quadratic functions, f;, are generated in the
following way:
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- In the linear term each element of the vector a; is uniformly drawn from
[—15.0,45.0]. Similarly &; is drawn uniformly from [—30.0, 0];
- The Hessian is defined by H; := LiUiLiT where L; is a unit lower triangular
matrix with components uniformly drawn from [—2.5, 2.5] and U, is a posi-
tive diagonal matrix, with elements uniformly drawn from [0.1,1.6]. When a
positive semidefinite Hessian is required the first component of the diagonal
matrix is set to zero.
The linear functions, g;, are constructed using a similar procedure: each element of
the vector ¢; is uniformly drawn from [0.0,10.0]. Similarly d; is drawn uniformly
from [1.0, 5.0]. Finally, the feasible domains considered are the following:

Xp={z €S :¥_z; <1}
Xy={z € S: 8,52 < 1,Zjepz; <1}

withS:={zcR":0<z; <1,j=1,...,n}andJ, := {1 < j < n:jisodd}
and J, := {1 < j<n:jiseven}.

Both methods were implemented in Sun Pascal, linked to a pair of existing
routines written in Sun FORTRAN and ran on a Sun Sparc System 600 worksta-
tion, using the default double precision (64-bit IEEE floating point format) real
numbers of Sun Pascal and FORTRAN. Both compilers were used with the default
compilation options.

For the minimization of the maximum of quadratic functions with linear con-
straints we used the bundle trust method coded in FORTRAN (Outrata et al.,
1991). In the dual type algorithms Steps 1 and 1’ are solved by computing the
correspondent minimal ellipsoidal norm problem, see Barros (1995). The frac-
tional programming problem that occurs in Steps 0, 3, 0’ and 3’ of the dual type
algorithms 1s solved by the classical Dinkelbach algorithm (Dinkelbach, 1967).
The code used to solve the above quadratic problems is an implementation in
FORTRAN of Lemke’s algorithm (Ravindran, 1972).

In Algorithm 1 we used in Step O the initial point y := (%, ey —;—L), while in
the new dual algorithm the initial points in Step O are given by yg— = (;1, e —nl;)
and z; := (0,...,0). In the Dinkelbach-type algorithm we take in Step O:

-
)\1 =d Yo, 2g) = mun
(90, 0) = mi yg 9(x)

The tolerance used in both implementations is € := 5 x 10~°, see Barros (1995);
Barros er al. (1994).

The results of the computational experience are summarized in the following
tables. For each pair (n, m), where n is the number of variables and m the number of
ratios, 5 uncorrelated instances of the problem were generated and solved by these
algorithms. Hence, the entries of the tables are averages of the corresponding values.
The columns under Dinkel report the results obtained using the Dinkelbach-type
algorithm for several ratios. Similarly, the columns under Dual report the results
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obtained using Algorithm 1, while NDual report the results obtained using the new
dual algorithm presented in Section 3.1. In these cases two extra columns are pre-
sented concerning important steps of these algorithms. Hence, column % F'r refers
to the percentage of the time used to compute the next iteration point, i.e. c(yx),
respectively d(yx, zx ), while Column % K refers to the percentage of the time used
to solve the Karush—-Kuhn-Tucker system and thus obtaining yj4 |, respectively
(Yk+15 2k+1)- The column Iz refers to the number of iterations performed by the cor-
responding algorithm. Each Sec column refers to the execution time in seconds of
the mentioned Sun workstation measured by the available standard clock function
of the Sun Pascal library. This measures the elapsed execution time from the start
to the end of the corresponding method, excluding input and output operations.
Finally under the column %Imp. we report the percentage of improvement in total
execution time between the three different algorithms tested. Thus, the percent-
age of improvement in total execution time of the dual type algorithms over the

Dinkelbach-type algorithm, are contained in column DiD, i.e. (1— %%i—l)) x 100

and column DiIND, i.e. (1 — %l) % 100. Finally, column NDD contains the
percentage of improvement in total execution time of the dual algorithm over the
new dual algorithm, i.e. (1 — g‘;f(—%,%) x 100.

Tables I and II contain the results obtained for test problems where the quadratic
functions, f;, are strictly convex. In these cases the convergence rate of both dual
algorithms is superlinear, see Barros et al. (1994) and Proposition 7. From these
results it seems that the new dual is better in terms of number of iterations than
the Dinkelbach-type algorithm. However, this improvement is not as effective in
terms of execution time, in particular, for the test problems with feasible set X.
Observe, on average more iterations are required by the new dual algorithm than
Algorithm 1. Furthermore, the Algorithm 1 has a much better performance than
the new dual.

Tables III and IV contain the results obtained for test problems where the
quadratic functions, f;, are only convex. The results resumed in these two tables
show that the behavior of the new dual algorithm worsens in the case where the
functions f; are no longer strictly convex. Indeed, both in terms of number of
iterations and execution time the performance of the new dual algorithm is not
so often better than the one of the Dinkelbach-type algorithm. Again, for the test
problems with feasible region A, the new dual algorithm has a slightly better
performance. However, the dual algorithm (Barros et al., 1994) still has a better
performance than the new dual algorithm, and the Dinkelbach-type algorithm.

Tables V and VI contain the computational results obtained with the scaled
version of the mentioned algorithms, and using z] := (0,...,0). In these tables
the columns under Dinkel-2 report the results obtained using the Dinkelbach-type-
2 algorithm (Crouzeix et al., 1986). Similarly, the columns under Dual-2 report
the results obtained using the scaled version of Algorithm 1 (Barros et al., 1994),
while NDual-2 report the results obtained using the scaled version of the new dual
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TABLE 1. &) and strictly quasiconvex ratios

Prob.  Dinkel Dual NDual % Imp.

n m It See It %Fr %K Sec It %Fr %K Sec DiD DiND NDD

5 5 8 0873 163 1.6 064 6 127 45 149 264 -713 57.1
10 511 10453 81 14 4086 80 12 743 61.0 288 452
15 5 91692 3 184 1.8 757 6 135 24 1262 552 254 400
20 5 8 3381 3 90 07 21337 84 09 4214 369 -246 494
510 9 1514 155 38 0536 124 43 098 646 348 457
10 10 14 1222 4 105 1.1 457 7 87 15 822 626 327 444
15 10 9 1829 3 104 1.1 1151 7 105 18 1926 371 53 402
20 10 10 5307 3 100 08 2532 7 87 09 4626 523 12.8 453
515 8 3023 89 31 101 8 65 29 250 66.7 174 59.7
10 15 11 1139 3 105 12 476 8 93 1.1 981 582 139 515
15 15 9 2659 3 103 10 1406 8 87 1.1 2747 471 —33 488
20 15 12 71.10 3 95 08 289 8 9.2 1.0 5986 593 15.8 51.6
520 9 158 4 107 24 099 8 101 42 191 373 -21.1 482
10 20 11 1395 4 105 16 5508 87 17 1070 60.6 233 486
15 20 11 3401 4 93 09 1490 7 86 10 2752 562 19.1 459
20 20 13 7723 3 96 08 3487 7 89 10 64.66 54.9 163 46.1

TABLE II. &5 and strictly quasiconvex ratios

Prob. Dinkelb Dual NDual Golmp.

P~
L2

n m It Sec It %Fr %K Sec %Fr %K Sec DiD DiND NDD

78 13 130 63.1 397 38.8
76 09 9.04 568 309 376
10,0 1.1 1464 514 38.1 214
90 0.8 39.16 49.7 10.1 44.
102 25 1.09 63.7 552 18.9
84 0.8 8.62 556 301 36.5
84 0.8 2653 565 311 369
80 0.7 47.01 469 200 337
156 33 1.17 57.0 35.1 337
74 0.8 1245 529 158 44.0
79 0.7 29.13 454 6.0 41.9
87 0.7 6291 533 162 443
72 21 1.97 430 12 424
80 1.2 12,02 492 204 36.1
80 09 31.09 571 193 46.9
73 06 7878 565 112 51.0

5 8 215
5 11 13.08
5 9 23.66

102 04 079
95 08 565
114 08 1151
99 0.6 21.89
129 22 088
10 10 13 12.33 88 0.7 547
15 10 13 38.49 86 06 1674

2
3
3
20 5 9 4354 3
4
3
3

20 10 10 58.73 3 9.8 0.6 31.17
3
3
3
3
4
3
3
3

5 10 12 243

515 9 180 15.8 31 077
10 15 11 14.79 8.0 07 697
15 15 9 3097 89 0.7 1692
20 15 11 75.05 9.1 06 3501
520 8 199 130 20 113
10 20 11 15.10 82 09 768
15 20 13 3851 9.1 09 1652
20 20 11 88.73 80 05 3861

~NN AN MDY
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TABLE III. &) and semistrictly quasiconvex ratios

Prob.  Dinkel Dual NDual Jolmp.
n m It Sec It %Fr %K Sec It %Fr %K Sec DiD DiND NDD
5 5 8 0605 131 76 047 12 106 6.8 1.20 21.7 -100.6 60.9
10 514 732 3 107 22 215 8 120 23 454 706 38.0 526
1S 5 11 1925 3 100 14 885 10 103 19 2284 540 -187 612
20 511 3753 95 1.1 1752 7 89 14 3392 523 7.7 483
51012 214 4 83 56 099 14 106 49 325 536 517 694
10 10 10 1391 4 66 14 573 12 66 14 1537 588 —10.5 627
15 10 10 2007 3 7.2 15 830 7 103 20 1879 58.6 6.4 558
20 10 12 66.09 3 79 1.0 2752 11 78 12 70.62 584 —6.9 61.0
515 7 2824 53 1.1 22211 40 23 437 21.2 551 492
10 15 11 1445 3 76 12 446 10 87 1.3 11.88 69.1 17.8 62.4
15 15 11 3663 3 68 1.0 17.62 11 7.0 12 4393 519 —199 599
20 15 11 6241 3 82 09 2953 9 86 1.1 68.14 52.7 —-9.2 56.7
520 11 233 4 116 24 091 13 122 S1 257 609 —10.3 646
10 20 11 1489 4 9.7 23 6.04 10 88 1.6 1446 594 29 58.2
15 20 12 3314 3 80 12 1309 9 87 14 3170 60.5 44 587
20 20 12 8498 4 6.1 0.7 3826 12 70 08 9554 550 —12.4 60.0
TABLE V. X, and semistrictly quasiconvex ratios
Prob. Dinkel Dual NDual Golmp.
n m It Sec It Fr %K Sec It %Fr %K Sec DiD DiND NDD
5 5 8 049 7 225 3.0 062 9 177 11.7 0.82 —-264 —663 240
10 513 8533 157 29 238 7 129 27 502 721 412 526
15 5§ 9 35093 73 06 2022 9 60 08 43.04 424 -227 53.0
20 511 4746 3 89 08 2584 6 82 09 4135 456 129 375
51013 2915 160 1.6 1.08 11 105 31 218 630 25.1 50.6
1010 9 13323 119 09 392 9 100 18 1033 706 224 62.1
15 10 11 2404 3 90 13 1203 8 9.6 16 2177 500 94 4438
20 10 10 69.11 3 7.7 05 3873 7 74 07 6141 440 11.1 36.9
515 9 436 4 150 29 115 8 92 21 248 736 43.1 535
10 15 10 13753 94 09 565 9 86 1.0 1221 3589 11.2 53.7
15 15 12 5196 3 68 05 2159 8 64 07 4282 585 17.6 49.6
20 15 10 7029 3 85 06 3550 8 73 07 7572 495 7.7 531
520 14 409 4 136 30 115 9 13.7 42 165 719 59.5 304
10 20 10 1672 3 80 10 678 10 70 1.1 1718 595 =27 603
15 20 11 4289 3 6.8 05 1998 9 63 07 4752 534 -108 580
20 20 12 10454 4 73 04 4537 12 62 06 11372 566 —8.8 60.1
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TABLE V. Strictly quasiconvex ratios

Xl XZ

Prob. Dink-2 Dual-2 Dual-2 Dink-2 Dual-2 NDual-2

n m It Sec It Sec It See It Sec It See It Sec

5 55 0753 0686 166 6 181 3 1.11 5 1.84
10 56 7793 4717 9526 1198 3 637 6 11.00
15 56 1549 3 873 6 1519 6 1901 3 1181 5 1634
20 56 3754 3 2071 7 4471 6 3255 3 2065 5 3740
5105 0623 1466 2016 1673 0775 146
10106 6603 4347 99 6 7453 578 6 844
15 10 6 1627 3 1239 7 2397 6 2177 3 1726 6 26.54
20 10 6 43.85 3 3147 7 7209 5 47.10 3 31.13 6 52.31
5156 2743 2.03 8 314 6 1.22 3 175 6 1.74
10 15 6 846 3 664 8 1144 6 1068 3 749 7 13.76
1515 6 2241 3 1372 8 3193 7 2920 3 16.84 6 2844
20 15 6 S51.63 3 3403 8 7236 6 5193 3 3417 6 6623
5205 1464 1028 2575 1523 1307 222
1020 6 813 4 811 8 1220 6 933 3 1045 6 15.17
15 20 6 2535 4 17.57 8 3093 6 248 3 1523 7 29.66
20 20 6 56.72 3 3136 8 6329 6 6000 3 3996 7 82.28
TABLE VI. Semistrictly quasiconvex ratios
X A

Prob. Dink-2 Dual-2 NDual-2 Dink-2 Dual-2  NDual-2

n m It Sec It Sec It Sec It Sec It Sec It Sec

555 0536 084 12 1135 0377 084 10 131
10 56 3833 245 8 558 7 5243 379 7 603
15 56 1372 3 1048 10 3221 6 2832 4 23.07 10 50.78
20 55 2076 3 1409 7 3001 6 3300 3 2314 7 4014
5106 1534 194 14 5307 1975 12511 323
10 10 6 1241 3 9.66 12 2081 6 11.63 3 585 & 11.52
15 10 5 1559 3 1038 7 3434 6 18.66 3 1377 8 23.61
20 10 6 3935 3 3072 11 7090 6 4586 3 3744 7 6098
5156 394 4 240 11 408 6 35 4 167 8 263
10156 7953 528 10 1236 6 1050 3 622 9 1351
15 15 6 2573 4 2006 11 49.00 6 3327 3 21.20 8 4473
20 15 6 5298 3 3132 10 8440 7 6097 3 3131 9 70.72
5206 1374 19712 3116 15 4 148 8 187
10 20 6 12.81 4 696 10 2142 6 13.05 3 9.04 11 2280
1520 6 21.24 3 1509 9 3231 6 3813 3 2194 9 4975
20 20 6 5479 4 3971 12 9810 6 69.49 3 5033 12 116.22
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algorithm presented in Section 4. Since the total computational time used by the
scaled versions of the dual-type algorithms appeared to be distributed in a similar
way as for its original version these tables are presented in a more condensed form.
Tables V and VI show that the Dinkelbach-type-2 algorithm dominates, both in
iteration number and execution time, the Dinkelbach-type algorithm. On the other
hand, the scaling of both the dual-type algorithms does not appear to produce
significant improvements on the behavior of the original algorithms. Contrary to
the dual algorithm (Barros et al., 1994) the new dual algorithm and its scaled
version no longer dominate the Dinkelbach-type-2 algorithm.

6. Conclusions

The usual approach to generalized fractional programming is usually a primal
approach due to the “awkward” form of the standard dual problem of a generalized
fractional program. Recently, Barros ez al. (1994) proposed a dual algorithm for
generalized fractional programrning by means of an alternative dual. However,
it was left to investigate if the standard dual could actually be solved efficiently.
This paper answers this question by introducing a new algorithm which solves
in an efficient way this “awkward” dual. Moreover, this algorithm extends to the
nonlinear case the Dinkelbach-type algorithm applied to the standard dual of a
generalized linear fractional program. Therefore, it can be seen as an extension
of a Dinkelbach-type algorithm to the nonlinear case with a “difficult” parametric
problem. However, under some reasonable assumptions it is possible to solve effi-
ciently this parametric problem in the nonlinear case. Moreover, due to information
provided by the dual problem it is possible to derive better rate of convergence
results for the new algorithm than for the Dinkelbach-type algorithm applied to the
primal problem. Finally, the approach developed in this paper also permits to show
that the standard duality results for the special case of generalized linear fractional
programs with a compact feasible region can be easily derived by specializing the
duality results for the more general nonlinear case.
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