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Abstract. In this paper we explore the relations between the standard dual problem of a convex 
generalized fractional programming problem and the “partial” dual problem proposed by Barros et 
al. (1994). Taking into account the similarities between these dual problems and using basic duality 
results we propose a new algorithm to directly solve the standard dual of a convex generalized 
fractional programming problem, and hence the original primal problem, if strong duality holds. 
This new algorithm works in a similar way as the algorithm proposed in Barros et al. (1994) to 
solve the “partial” dual problem. Although the convergence rates of both algorithms are similar, the 
new algorithm requires slightly more restrictive assumptions to ensure a superlinear convergence 
rate. An important characteristic of the new algorithm is that it extends to the nonlinear case the 
Dinkelbach-type algorithm of Crouzeix et al. (1985) applied to the standard dual problem of a 
generalized linear fractional program. Moreover, the general duality results derived for the nonlinear 
case, yield an alternative way to derive the standard dual of a generalized linear fractional program. 
The numerical results, in case of quadratic-linear ratios and linear constraints, show that solving 
the standard dual via the new algorithm is in most cases more efficient than applying directly the 
Dinkelbach-type algorithm to the original generalized fractional programming problem. However, 
the numerical results also indicate that solving the alternative dual (Barros et al., 1994) is in general 
more efficient than solving the standard dual. 
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1. Introduction 

Fractional programming, i.e. the minimization of a ratio of two functions sub- 
ject to constraints, has been studied extensively during the last several decades 
(Avriel et al., 1988; Craven, 1988; Pardalos and Phillips, 1991; Schaible, 1978, 
1983; Schaible and Ibaraki, 1983). Lately the focus has shifted towards multi-ratio 
optimization problems. In particular to generalized fractional programs, where the 
largest of several ratios of functions is to be minimized (Barros, 1995; Barros 
et al., 1994; Bernard and Ferland, 1989; Benadada, 1989; Crouzeix and Ferland, 
1991; Crouzeix et al., 1983, 1985, 1986). These types of problems arise in eco- 
nomic equilibrium problems, in management applications of goal programming 
and multi-objective programming involving ratios of functions, and in rational 
approximation in numerical analysis (Crouzeix et al., 1983). 

Among the solution procedures to tackle generalized fractional programs the 
most popular is the parametric approach. This approach gives rise to a class of 
algorithms, which are surveyed by Crouzeix and Ferland (1991). Computational 
experience with some of these algorithms is reported in Benadada (1989); Bernard 
and Ferland (1989); Ferland and Potvin (1985). An important class of generalized 
fractional programs is given by convex generalized fractional programs. For this 
special class a dual description is given by means of standard Lagrangian duality 
results (Avriel et al., 1988; Craven, 1988; Jagannathan and Schaible, 1983; Werner, 
1988). However, these standard duality results did not appear to provide efficient 
computational tools to solve this class of problems. Quite recently, Barros et al. 
(1994) proposed a different dual description and at the same time used this alter- 
native dual problem to solve the primal problem. In particular the associated dual 
algorithm can be seen as the dual of a Dinkelbach-type procedure (Crouzeix et 
al., 1985) and its behavior in case of quadratic-linear ratios and linear constraints 
appears to be superior to the primal Dinkelbach-type algorithm (Crouzeix et al., 
1985) and also to its scaled version (Crouzeix et al., 1986). Based on this approach 
we introduce in this paper a new dual algorithm solving the standard dual problem, 
which as the algorithm of Barros et al. (1994) detects at the same time an optimal 
primal solution. It will also be shown that this new algorithm extends to the non- 
linear case the Dinkelbach-type algorithm applied to the standard dual problem of 
a generalized linear fractional program, proposed in Crouzeix et al. (1985). At the 
same time, this enables us to show that the standard dual of a generalized linear 
fractional programming problem (Crouzeix et al. (1983, 1985); Jagannathan and 
Schaible (1983)) can actually be derived using classical Lagrangian results if the 
feasible region is a polytope. To summarize, the algorithm discussed in this paper 
shows how to use the standard dual of a convex generalized fractional programming 
problem to solve the primal problem. However, it turns out from a computational 
point of view that this new dual algorithm is inferior to the dual algorithm proposed 
in Barros et al. (1994) to solve the alternative dual. 
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The paper is organized in the following way. We start by briefly reviewing the 
dual algorithm proposed in Barros et al. (1994) and the Dinkelbach-type algorithm 
introduced in Crouzeix et al. (1985) for generalized fractional programming prob- 
lems. In Section 3.1 the approach followed in Barros et al. (1994) is related to the 
parametric problem associated with the standard dual problem of a convex general- 
ized fractional problem described in Avriel et al. (1988); Craven (1988); Crouzeix 
et al. (1983); Jagannathan and Schaible (1983); Werner (1988). This relation will 
enable the construction of a new algorithm to solve a convex generalized fractional 
programming problem by means of its standard dual problem. In Section 3.2 we 
start by showing how the general duality results can be directly used to derive the 
standard dual of a generalized linear fractional programming problem (Crouzeix et 
al., 1983, 1985; Jagannathan and Schaible, 1983). Moreover, it is also shown that 
in the linear case the new algorithm corresponds to the Dinkelbach-type algorithm 
applied to the standard dual of a generalized linear fractional program. A scaled 
version of the new algorithm is also briefly discussed in Section 4. Computational 
results comparing the performance of the new algorithm with the dual algorithm 
of Barros et al. (1994) and the usual Dinkelbach-type approach are presented in 
Section 5. To conclude we give some final remarks. 

2. Generalized Fractional Programming 

LetX~R”beacompactsetandf,,gi:K:~R,iEI:={l,...,m},m> 1, 
a class of continuous functions where K is an open set containing X. Assum- 
ing g?(x) > 0 for every 2 E X and i E I, consider the generalized fractional 
program 

ft(x) Since the function IZ: +-+ rnax,!=I m is finite-valued and continuous on the compact 
set X & R” the optimization problem (P) has an optimal solution with optimal 
objective value 19(P). We will also assume that the feasible set X is convex and that 
either the vector-valued function f(~)~ := (fi (z), . . . , fm (x)) is nonnegative and 
convex on X, and g(x)T := (gl (xc), . . . , gm(x)) positive concave on X or that f 
is convex and g positive affine on X. Observe that, contrary to convex‘generalized 
fractional programming it is not required to particularize the feasible set X. 

The dual approach introduced in Barros et al. (1994) is based on the following 
equality, which follows from the assumptions and Sion’s minimax theorem (Sion, 
1958): 
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with C := {y E Rm : y 1 0, &lyi = 1). The above equality relation permits to 
establish a new dual for the problem (P). In fact, let c : C - R be defined by 

c(y) := Inn 3. (2) 

As shown in Lemma 3.1 of Pshenichnyi (1971), the function c is continuous on 
C and, moreover, it is semistrictly quasiconcave (Avriel et al., 1988), since it is 
the infimum of semistrictly quasiconcave functions. Thus, by (l), the optimization 
problem 

(Q) 

is a semistrictly quasiconcave optimization problem, where a local maximum is a 
global maximum (Avriel et al., 1988). Moreover, the above optimization problern 
can be seen as a “partial” dual program of the generalized fractional program (P), 
since it only “dualizes” the ratios. Observe also that optimization problem (Q) is a 
particular generalized fractional program involving an infinite number of ratios. 

The dual method proposed in Barros et al., (1994) solves (Q) by constructing a 
sequence yh E C, Ic 2 0 such that the sequence {c(yk) : k 10) is nondecreasing 
and limktoo c(yk) = 8(P). In order to construct such a sequence, the parametric 
problem associated with (Q) is considered: 

ygF(y, 4 

where the function F : C x R - R is given by: 

(Qx> 

F(Y, 4 := zig {yT(f(4 - M4)} . (3) 

Hence, at the point yk E C with objective value c(yk) the parametric problem 
(Q,(,,)) has to be solved. If the optimal value is zero then the current iteration 
point yk is the optimal solution of (Q). Otherwise, the next iteration point is 
given by yk+l with yk+l an optimal solution of (Q,(,,)). Moreover, computing the 
value c(yk+l) is equivalent to finding the unique root of F(yh+i, X) = 0. Since 
solving (Q,(,,)) directly usually takes a lot of time, an indirect approach to solve 
this problem, making use of the I&rush-Kuhn-Tucker conditions, is presented in 
Barros et al. (1994). Besides being efficient, this approach also recovers a primal 
solution associated with the current iteration point yk, and this enables to exhibit 
at the end of the procedure an optimal solution of (P). To be more precise, it 
was shown in Barros et al. (1994) that under some reasonable assumptions it is 
possible to relate an optimal solution ~k+i of (P+,,$ to an optimal solution yk+l 
of (QccYk)), with (PA) denoting the parametric problem of the Dinkelbach-type 
algorithm (Crouzeix et al., 1985), i.e. 
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Moreover, by the convexity/concavity assumptions on f, g and invoking von 
Neumann’s minimax theorem it can be shown that the parametric problems (Q,(,, 1) 
and (P,(,,)) provide the same optimal objective value, i.e. 

qYk+l, C(Yd> = WYk& 

The dual algorithm (Barros et al., 1994) is now described by the following proce- 
dure: 

ALGORITHM 1. 
Step 0. 

Take yo E C, compute c(yo) = minzEx $$$ and let k := 1; 
0 

Step 1. 
Determine yk := argmax,&(y, c(y~-1); 
Step 2. 
If JYYk, 4Yk-I>> = 0 

Then yk-1 is an optimal solution of(Q) with value c(yk-t) and Stop. 
Else GoTo Step 3; 

Step 3. 
Compute c(yk), let k := k + 1, and GoTo Step 1. 

The above algorithm converges at least linearly, and sufficient conditions estab- 
lishing superlinear convergence can also be found in Barros et al. (1994). 

It is interesting to remark that Algorithm 1 works in a similar way as the 
Dinkelbach-type algorithm (Crouzeix et al., 1985), which can be summarized as 
follows: 

ALGORITHM 2. 
Step 0. 
Take 20 E X, compute Xt := rnaxtEI $$ and let k := 1; 
Step 1. 
Determine Xk := argminzEx {maxi,r{fi(x) - &&i(X)}}; 
Step 2. 
If F(&) = 0 

Then Xk is an optimal solution of(P) with value & and Stop. 
Else GoTo Step 3; 

Step 3. 

Let Ak+l := maXiE1 gi(zk) , (fro let k := k + 1, and GoTo Step 1. 

Observe that both algorithms proceed in a comparable way. Indeed, at Step 1 a 
parametric problem must be solved to check in Step 2 whether or not optimality 
was reached. If the present iteration point is not optimal, then the next iteration point 
is given by an optimal solution of the parametric problem solved in Step 1. Using 
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this point, a “better” approximation of the optimal objective value is computed in 
Step 3. On the other hand, an essential difference between both algorithms is that 
the Dinkelbach-type algorithm constructs a nonincreasing sequence {X, : k > 1) 
approaching the optimal objective value 0(P) from above, while the dual algorithm 
constructs a nondecreasing sequence {c(yk) : Ic 2 0} approaching d(P) from 
below. 

The scaled versions of the above mentioned algorithms can be found, respec- 
tively, in Barros et al. (1994) and Crouzeix et al. (1986). According to Barros et al. 
(1994) the scaling of the parametric problem appears to be only effective for the 
Dinkelbach-type algorithm. In fact, the scaled version of the dual algorithm pre- 
sented in Barros et al. (1994) does not appear to produce significant improvements 
on the behavior of the original dual algorithm. Moreover, according to Barros 
et al. (1994) the original version of the dual algorithm appears to dominate the 
scaled version of the Dinkelbach-type algorithm, the so-called Dinkelbach-type-2 
algorithm, both in terms of iterations and execution time. 

3. Using Duality to Solve Generalized Fractional Programs 

Apart from the recent approach in Barros et al. (1994), most of the algorithms 
that solve generalized fractional programs are “primal” algorithms which do not 
solve the associated standard dual problem. This may be justified by the fact that 
the standard dual of a convex generalized fractional program looks much more 
difficult to handle than its primal counterpart. An exception is given by generalized 
linear fractional programs for which the dual under certain conditions is again a 
generalized linear fractional program (Crouzeix et al., 1983, 1985; Jagannathan 
and Schaible, 1983). This lead Crouzeix et al. (1985) to consider solving the dual 
problem via the Dinkelbach-type algorithm, whenever the unbounded feasible set 
X makes it impractical to solve the primal problem directly. 

In this section we will show that in spite of the “awkward” form of the standard 
dual problem of a generalized fractional program we can construct an efficient 
algorithm to solve the dual problem. This algorithm is based upon the approach 
proposed by Barros et al. (1994) and generates a sequence of iteration points 
converging from below to the optimal objective value 29(P). After introducing this 
new algorithm for the nonlinear case, we will specialize it to the linear case and 
show that it corresponds to the Dinkelbach-type algorithm applied to the standard 
dual of a generalized linear fractional program. Moreover, we will show how the 
standard dual of a generalized linear fractional program can be directly derived, 
using the general duality results for the nonlinear case. 

3.1. NONLINEARCASE 

In this section we will assume that (P) is a convex generalized fractional program- 
ming problem, where the feasible nonempty set X is given by X := {Z E S : 
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h(z) 5 0}, with S c K a compact convex set and h : En - R’ a vector-valued 
convex function. Moreover, the continuous functions fi, gi : K --+ R, i E I, 
verify either of the following convexity/concavity assumptions: 

(Cl) For every i E I, the function fi: K: - R is convex on S and nonnegative 
on X and the function gi: X: - Rm is positive and concave on S; 

(C2) For every i E I, the function fi : K ---+ R is convex on S and the function 
g; : K - Rm is positive and affine on S. 

Clearly, under these conditions the set X is compact and convex and therefore 
(P) has an optimal solution with 8(P) finite. Observe also that, due to the convexi- 
ty/concavity assumptions (Cl), (C2) we also have that 19(P) is nonnegative if g is 
a positive concave vector-valued function. 

In orderto simplify the notation, we willintroduce f(~)~ := (fl (XC), . . . , fm(x)) 
and gWT := (gl(x>, . . . , gdx)). 

An easy direct approach to derive the dual problem of (P) is given by Jagan- 
nathan and Schaible (1983). Due to S compact one can apply a generalized Farkas 
lemma (Bohnenblust et al., 1950) to a system of convex inequalities. This gives 
rise to the standard dual problem of (P) given by 

sup { t : tyTg(z) < yTf(z-) + zTh(z), t E 72, z E S, y E C, z 2 0 > 
with C := {y E Rm : y 2 0, &zyi = 1). Since ga(x) > 0 for every 2 E 5’ and 
i E I the above problem can be rewritten as 

03 

Moreover, due to S compact and yTg(x) > 0 for every z E S, one may replace 
inf by min. Observe that, although 8(D) equals 6(P) (Crouzeix et al., 1983; Jagan- 
nathan and Schaible, 1983) there might not exist an optimal dual solution. 

The similarities in structure between the standard dual problem (D) and the 
“partial” dual problem introduced in Barros et aZ. (1994) suggest that it is possible 
to directly solve (D). In this case, we need to guarantee that (D) has an optimal 
solution. Hence, we will impose a Slater-type condition on the set X. 

Slater condition 
Let J denote the set of indices 1 2 j 5 r such that the jth component hj 

of the vector-valued convex function h : 72” --i ‘R’ is afine. There exists some 
x belonging to the relative interior ri(S) of S satisfying hj(x) < 0,j # J and 
hj(z) 5 O,j E J. 

Using now the indirect Lagrangian approach in Craven (1988), the following 
result is easy to show. 
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PROPOSITION 1. If the Slater condition holds then the parametric problem 

(DA) 

has an optimal solution and i+(LJx) = 19(Px) for any X ifg is a positive afine 
vector-valued function on S or for X 2 0 if g is a positive concave vector-valued 
function on S. Moreovel; the dual problem of (P) has an optimal solution and 
6(D) = ?9(P). 

Proof. By Theorem 28.2 of Rockafellar (1970) the Lagrangian dual (DA) of the 
parametric problem (PA), given by 

has under Slater’s condition an optimal solution for every X E R if the functions 
gl, i E I, are positive and affine on S or for every A > 0 if the functions g,, i E I, 
are positive and concave on S. It also follows that 6(Dx) = 1y(Px) and this proves 
the first result. 

Using the above result and Theorem 4.1 of Crouzeix et al. (1985) we have for 
A, = d(P) that 

0 = 19(&) = S(DA,) = yE~,-->O {F&J { YTf(4 + zTw - X,YTh))} max 
- 

Hence, there exists some y* E C and Z, > 0 such that 

and 

for every y E C and z 2 0. By the above equality and g(x) > 0 for every z E S 
we obtain that 

A, = nili 
i 

Y,T.w + -a(x) 
Yh(Xc> 1 

On the other hand, from (5) it follows that 

for every y E C and z > 0. Hence, by the previous equality and inequality the dual 
problem (D) has an optimal solution and A, = 19(P) equals 19(O). 
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Since we are interested in an algorithm to solve the standard dual problem (D) we 
will assume from now on that the Slater condition holds. Hence we can rewrite the 
standard dual (D) as 

max d(~, 2) 
yEC,t>O 

where the function d: C x R’, + R is given by 

(6) 

with R’, denoting the nonnegative orthant of R’. Notice that (6) corresponds 
to a single-ratio fractional programming problem. Clearly, by the positivity of 
g on S and S compact the function d is continuous on C x R’,, see Lemma 
3.1 of Pshenichnyi (1971). Moreover, the function d is semistrictly quasiconcave 

since it is the infimum of semistricly quasiconcave functions x H YT.f(5)+~Th(~) 
YT9(o) ’ 

see Avriel et al. (1988). Hence, (D) corresponds to a quasiconcave optimization 
problem, where a local maximum is a global maximum, see Avriel et al. (1988). 
Notice, since the Slater condition holds we know that this maximum is attained, 
i.e. there exists some (y, Z) E C x R’, such that d(y, z) = 19(D). 

Due to the similarities between the standard dual (D) and the “partial” dual (Q) 
we will use the approach described in Barros et al. (1994) to derive a new algorithm 
to solve (D). Therefore, we will start by relating the parametric problems associated 
with (D) and with (Q) and hence, we introduce the value function G : R -+ 77, 
associated with (DA) given by 

G(A) := max G(y, Z, X) 
YEC,ZLO 

with 

G(y, z, A) := II-$; { yTf(x) + zTh(x) - AyTg(x)} . 

LEMMA 2. For A E R ifg is a positive afine vector-valuedfinction on S or for 
X > 0 if g is a positive concave vector-valuedfunction on S 

Moreovel; $ is an optimal solution of (&A) if and only if there exists some 2 > 0 
such that (9,;) is an optimal solution of (DA). 

Proof. Remember by definition we have that 

G(W := yiy y,aox { 2 {Yap + zTh(x) - h’g(x)}} . 
- 
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Considering z > 0 as the vector of Lagrangian multipliers associated with the 
constraints h(z) 5 0, we obtain under the Slater condition by Theorem 28.2 of 
Rockafellar ( 1970) that 

and hence it follows that G(X) = maxYEs F(y, A). 
TO verify the second part, notice that, if 6 E C is an optimal solution of (Qx), 

then by (7) and (8) there exists some 5 2 0 satisfying 

and so (6,;) is an optimal solution of (DA). Moreover, if (3, 5) is an optimal solution 
of (DA), then it follows by weak duality and (7) that 

g~>~ G(Y, 4 = G(Y, .. 2, A)=?3 {~Tf(x)+2Th(z)-X~Tg(~)} <F(ij, A) 
- 

and this shows that $ is an optimal solution of (Qx). 

Notice from the above lemma that i is the optimal Lagrangian multiplier vector 
associated with the constraints h(z) < 0 of the optimization problem defined by 
F(iI, A>. 

In spite of the different formats of the duals (Q) and (D) they have by Lem- 
ma 2 equivalent associated parametric problems, if the Slater condition and the 
convexity/concavity assumptions, (Cl), (CZ), hold. Moreover, since it was shown 
in Barros et al. (1994) that the parametric problems associated with (P) and (Q) 
are equivalent, using the above lemma, this relation can now be extended to the 
parametric problem associated with (D). Hence, this important relation also implies 
that for (y/l~, zk) an optimal solution of (DA,) then the function G(,,,,,) : R + R 
given by 

G(,,,,,)@) = G(Y~, z/c> 8 (9) 

approximates the “primal” parametric problem function F at Xk from below and 
G(Yk,zk)(M = FOd. H ence, the root of the equation G(,,,,,) (A) = 0 given 
by d(yh, zk) yields a lower bound on 19(D). Before introducing the algorithm to 
solve (D) we will briefly discuss how to compute d(yk, zk). Computing d(y,+, z~) 
corresponds to solving a single-ratio fractional programming problem, which can 
be easily done using the classical Dinkelbach algorithm, see Dinkelbach (1967). 
However, the efficiency of this procedure depends mostly on whether the associated 
parametric problem has a “nice” form. Clearly, if assumption (Cz) holds then the 
associated parametric problem corresponds to a convex problem. On the other hand, 
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if assumption (Cl) holds the parametric problem is convex only if the parameter 
X is nonnegative. Nevertheless, in this case, 0(P) > 0 and hence we are only 
interested in (y, z) E C x RI; such that d(y, z) 2 0. Observe that, in this case (6) 
is also a convex single-ratio fractional programming problem. 

In the same way as for the dual algorithm (Barros et al., 1994) it is easy to 
show that the sequence {d(yk, .zk)}h>r is strictly increasing. In fact, Lemma 3.1 of 
Barros et al. (1994) can be extended to this case as follows. 

LEMMA 3. For (jj,2) E C x R’, we have 

KdiO)) = {(Y,z> E C x R’, : G(Y, z,d(W) > O} 

and 

CdiG)) = {(Y,z> E C x R’, : G(Y, w@,~)) 2 O} 

where Ud (d($, 2)) and Ui (d(y, z)) denote the upper respectively the strict topper 

level set of thefinction d at (8, 2). 

The proof of the above lemma can be found in Barros (1995). 
We can now propose the “dual-type” algorithm to solve (D): 

ALGORITHM 3. 
Step 0. 
If assumption (Cl) holds 

Then Let X0 := 0 
Else Take yy~ E C, zo > 0; 

Compute X0 := d(yo, zo) = minzES Y;.fb)+qG). 

Yo’ s(z) ’ 
Let k := 1; 

Step 1. 
Determine (yk, zk) := argmax,Ec,z20G(y, z, &-I); 
Step 2. 
If G&-i) = 0 

Then (yk- I, Z& 1) is an optimal solution of (D) with value x,&i and 
stop. 
Else GoTo Step 3; 

Step 3. 
Compute Ai, := d(yk, zk), kt k := k + 1, and GoTo Step 1. 

Although this new dual algorithm is similar to the one presented in Barros et 
al. (1994) the derivation of the convergence results is more “complex”. This is 
mainly due to the fact that the feasible set of the standard dual problem (D) given 
by C x R’, is no longer compact as in the case of (Q). 

To prove the convergence of this new dual algorithm we need to investigate 
the behavior of the approximation function G(Yk ,Zk 1 : R --+ R. In a similar way 
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as in Barros et al. (1994) it can be shown that this function is a concave lower 
approximation of the function F. Observe that by Theorem 23.4 of Rockafellar 
(1970) the subgradient set a( -G(,,,)) (X) of the convex function -G+) : R --+ 
R at the point X is nonempty. Remember that p E R is a subgradient of the function 
-Gc,,~) at the point X if and only if 

G(,,z)(X + t> 5 G(,,z, (4 - tp (10) 

for every t E R. The next result characterizes the subgradient set a( -G(,,,))(X). 
Before mentioning this result we introduce for fixed (y, Z) E C x R’+ the set S(,,,) 
(A) of optimal solutions of the optimization problem 

$2 { YTf(4 + zTh(x) - XyTg(x)} . 

i.e. 

S(,,,)(4 := {x E S : Y~(~(x:> - k&H + zTh(x) = G(y,,,(4-} (11) 

Clearly, this set is nonempty. Also, by the continuity of the vector-valued functions 
f, g and h it must be closed, and thus by the compactness of S and S(,,Z)) (X) c S 
it is compact. Finally, if X 1 0 then the function x c) yT (f(x) - Xg(x)) + .zTh(x) 
is convex due to the convexity and concavity of f, h and g respectively, and this 
implies that S(Y,Z~(X) C S is also convex for every X 2 0. Observe that the above 
result also holds for any X, if the functions gi are positive and affine on S for every 
i E I. 

LEMMA 4. For everyjiwd (y, z) E C x 72; and X E R follows that 

The proof of the above lemma is omitted since this result is a special case of a 
more general result given by Theorem 7.2 of Rockafellar (1983) or Theorem 4.4.2 
of Hiriart-Urruty and Lemarechal (1993). However, an easy proof of this special 
case can be found in Barros et al. (1994). 

Observe, since S is a compact set and g is a positive and continuous vector- 
valued function that 

(12) 

This implies using y E C that 

+G(,,z) (N c: kt Al 
for every (y, Z) E C x R’+ and X appropriately chosen. 

Denote now by Ic” the number of times that Step 1 was executed by the algo- 
rithm. Clearly if Ic* is finite it follows that G(yk*, zk*, d(yk*-r , zk*-r )) = 0, while 
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for k* = +co the algorithm does not stop. Before mentioning the next result we 
introduce 

&(Y, 4 := max { yTs(4 : z E S(,,,)(d(~k, 4)) 

and 

Sk+, : = min yl+tg(z) : z := argminzEg 
i 

Y:+lfb) + q+,h(4 

Y:+&) I 

= min yL+rg(c) : z E SC -I Yk+l,*k+l)w(Yk+lr %,,i)} 

Observe that by Lemma 4 we have 

A,(Y, 4 E d(-G(y,z,)(4~k, 4) and 

hk+l E a(-G(,,+,,,,+,))(d(Y~+l, %SlN. 

THEOREM 5. The sequence (yk, zk), 0 5 k < k*, does nut contain optimaE 
solutions of(D) and the correspondingfinction values d(yk, zk), 0 < k < k* are 
strictly increasing. Moreovel; if k* isfinite, then d(yk* , Zk* ) = 6(P) while for k*= 
+m we have 

fi~d(!/k,~k) = G(p). 

Finally, if k* = +CO and (y*, z,) is an optimal solution of(D), then 

d(p) - d(Yk+lr .%+I> I 1 - ““&‘*‘) b(p) - d(Yk, a)) (13) 

5 
( > 
1 - $ (g(p) - d(Yk, a)) 

holds for every k 2 0, with 6 and A defined by (12). 
Proof. Using Lemma 3 it follows that G(&+r , Zk+l , d(yk, zk)) > 0 if and only 

if (yk, zk) is nonoptimal. Moreover, by the same lemma we obtain that 

d(Yk+l, zk+l) > dbk, zk) 

if (yk, zk) is nonoptimal, and so the first part of the theorem is proved. 
Consider now the case with k* finite. Since the algorithm stopped in a finite 

number of steps we must have G(&* , zk* , d(yk+ _ 1)) = 0 and using again Lemma 3 
it follows that (&*, %k*) SOlVeS (D). Hence, by Proposition 1 we have d(yk*, zk*) = 
19(D) = G(P). 

To verify the last part of the result, notice that d(yk, zk), k > 0, is strictly 
increasing for k* = i-00, and since d(yk, zk) 5 G(D) < 00 for every k 2 0, it 
must follow that LimkTm d(yk, zk) exists and is finite-valued. Moreover, by Lemma 
4 and (10) we obtain for every optimal solution (y*, z,) of (D) that 

G( yr,~r)(~(Y*~ z*>> - G(,+)(d(yk, zk)) 

5 -(d(y*, Z&&/k, ac))&(Y*, G). 
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Since G(YIrz*) MY*, z*)) = 0 this implies that 

G (Yk+m+,)h% 4) = yEyy&,z,(d(~k, 4) L G(,*,,*)(d(~k, 4) 

2 (d(;*~z~) - d(~k, .a)>A,(y*, 4. (14) 

On the other hand, applying again Lemma 4 and (10) we obtain 

G(Yk+,,“k+l)MYk~ 4) = G(Yb+l,Zk+l)MYk’ Zk>) 
-G (Yk+l ,zle+,) MYk+lY zk+l)> 

5 @(Yk+l, ZkSl) - d(Yk, %))&+1. 

The above inequality and (14) imply that 

(G/k+1 > zlc+d - d(yk, z~))&+I L (d(y*, zr) - d(yr+, Z.&MY*, ze). (15) 

Since Ak(y*, z*) and 6 ~c+i belong to the interval [6, A] it follows by (15) and the 
existence of limkToo d(yk, zk) that 

@)(yi,, a) = d(y*, z*) = 6(o) = d(p) 

Moreover, by the same argument we obtain 

G(p) - d(yk+l, %+I) = d(P) - d(yk, .a) + d(yk, z/J - d(yk+,, z~+~) 

Clearly, by inequality (13) this algorithm converges at least linearly. In order to 
improve this convergence rate we need to impose a “stronger” constraint qualifica- 
tion than the Slater condition. Therefore, we will consider the following so-called 
strong Slater condition (Hiriart-Urruty and Lemarechal, 1993): 

Strong Slater condition 
There exists some i E ri(S) satisfying h(2) < 0. 

This condition is by the continuity of the vector-valued function h equivalent to the 
requirement that there exists some 2 E S satisfying h(P) < 0. We can now establish 
the following simple condition which improves the convergence rate. However, 
before mentioning this result we will show that the strong Slater condition implies 
the existence Of an aCCUInUhtiOn point Of the sequence {(yk, zk)}k>a generated 
by Algorithm 3. Observe that the existence of such an accumulationpoint is not 
immediately clear due to zk > 0 for every k > 0. 
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LEMMA 6. If the strong Slater condition holds, i.e. there exists some 2 E S 
satisfjing h(2) < 0, then the sequence {(yk, zk)}k>o has an accumulation point 
(y*, z,) and this accumulation point is an optimal solution of(D). Moreover if(D) 
has a unique optimal solution (y*, 2,) then limkroo yk = y* and l&T, Zk = z* . 

Proo& Suppose that the sequence (yk, Zk) E C x R’+ has no convergent subse- 
quence in C x R’,, k E K. This implies, since C is a compact set, that there exists 
a subsequence K1 C K with 

kE;,~Too~k = Y* and kEjfyTm IlZkll = rx (16) 

However, 

and due to g(2) > 0, h(2) < 0 and (16) it follows that 

lim 
kEKI,kToo 

d(yk, zk) = --03* 

However, the sequence d(yk, ZC) is strictly increasing by Theorem 5 and this 
yields a contradiction. Hence the sequence { (?Jk, zk)}k>o has an accumulation 
point (y*,z*) E C x R’,. Applying again Theorem 5 and using the continuity of 
the function d we obtain that such an accumulation point (y*, z,) is an optimal 
solution of (D), which concludes the proof of the first part of this lemma. 

The second part of this lemma is easily verified by contradiction. 

Using the previous lemma we can establish the following superlinear conver- 
gence rate result. 

PROPOSITION 7. Zf the strong Slater condition holds and for every optimal 
solution (y*, z,) of(D) the optimization problem 

min Y,Tf(X> + %Th(X> 
x:ES Yh(X) 

has a unique optimal solution then the new dual algorithm converges superlinear- 
lY. 

ProoJ: If for all optimal solutions (y* , z,) of (0) 

lim sup 1 - 
( 

Ak(Y*, G> = o 
kTm Sk+1 > 

then, from Theorem 5, it follows that the convergence rate of the new dual algo- 
rithm is superlinear, and so the result is proved. Let 8, := lim supkToo Sk+ t . 
By the definition of limsup there exists a subsequence K C JV such that 6, = 
lim&1{,kl, Sk+ 1. Moreover, by Lemma 6 it follows that the sequence { (yk , .zk)},~o 
admits a subsequence K1 2 K such that limlcEh’,,kToo(yk+l,Zk+,) = (y*,z*) 
with (y*, z,) an accumulation point, and this accumulation point is an optimal 
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solution of (D). Hence, consider the sequence 1 -w for such an accumu- 
lation point (y*, 2,). It is easy to verify that the point-to-set mapping (y, Z) e 
8(-G(Y,Z,)(d(y, z)) is upper semicontinuous. Since 

Sk+1 E a(-G(,,+,,,,+,))(d(Yk+l, zk+lh lim 
kElCl,kToo 

bh+t = 6, and 

kt~l~Too(Yk+l’ %+1) = by+, z*) 

we obtain that 

See E WG((,~,z~))@(~lc, 4). (17) 

On the other hand, it is clear by Lemma 4 that 

A~Y*,z*) E +G,*,,*))@(Y~, 4). 

Moreover, since the increasing sequence d(yk , zk) converges from below to d(y, , z,), 
it follows by the convexity of the function -G(,* ,I’*J and 

A~(Y*, 4 E a(-G(,+,)(d(yk, 4) 

that 

&(Y*, z*> 5 &+l(y*, zt> 5 . . . I a, with a, E d(-G(,e,z*))(d(y,, z*)). 

This implies lirnkToo Ak (Y*, z+) =: Aoo (ye, z*) exists and by the upper semiconti- 
nuity of the point-to-set mapping A I--+ a( -GcY*+ 1) (X) we obtain that 

A&Y*, z*) E ~(-G(,*,z*))(d(~w 4). 

Since we already observed that 

A,(Y*, z*) I a* for every a+ E d(-G(,e,z*))(d(y*, z,)), 

it must follow by Lemma 4 that 

A 2 A,(Y*, z*) = min {ds(z) : 5 E S(,,,,*)(d(y,, z*))} > 6 > O. (18) 

Observe now that by (17) and (18) we have 

= 1_ Ady*) < 1, 

cc 

and hence, if the optimization problem (D, ) has a unique optimal solution, implying 
by (17), (18) and Lemma4 that 0 < S < A,(y,, z+) = 6, 5 A < co the desired 
result follows. 
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In order to guarantee the uniqueness condition expressed in the above propo- 
sition we will consider the subclass of quasiconvex functions usually known as 
strictly quasiconvex, see Avriel etal. (1988). Observe by Proposition 3.29 of Avriel 
et al. (1988) that minzES $J(z) has a unique optimal solution if $ : K: + R is 
strictly quasiconvex and continuous. The next corollary establishes sufficient con- 
ditions on the functions fi and g, to ensure that the convergence rate of Algorithrn 
3 is superlinear. 

COROLLARY 8. If the strong Slater condition and either one of the following 
conditions 
(I) f : K: ---+ R” is strictly convex on S and nonnegative on X and g : K + 

R” is positive and concave on S; 
(2) f : K -+ Rm is convex on S and nonnegative on X and g : K + R” is 

positive and strictly concave on S; 
(3) f : K: --+ Rm is strictly convex on Sand g : K ---+ R” is positive and afine 

on S 
hold then the new dual algorithm converges super-linearly. 

Proof We will prove the result only for (1) and (2). For (3) the result follows 
easily. By Proposition 7 and the properties of strictly quasiconvex functions it 
is sufficient to show that for any optimal solution (y*, z,) of (D) the function 
T) : K: -+ R given by 

lL(x) .= YXX) + 044 

YTdX:> 

is strictly quasiconvex on S. By Proposition 1 we have that 

min y,Tf(x) + ZTh(x> 

XES Y,TdX:> 

equals 6(P) > 0, and so it follows that x ++ y: f (x) + $/z(x) is nonnegative on 
S. This yields for every xl, x2 E S with ~1 # 22 and 0 < X < 1 that 

$@a + (1 - A)x2) 

< AY,Tf(Xl) + @qx1) + (1 - 4Y,Tf(X2> + (1 - +*Tqx2) 

~YTdXl) + (1 - ~)Y,Ts7(X2> 

=I 

~y,Tg(x,)Y-TI(:“ll+“Tho + (1 _ X)y~g(x2)Y’Tf(~~~~~)h(x~) 
YTdXl) 

* ~YTdXl) + (1 - 4YTdX2) 

< max Y,Tf(Xd + o&) Y32> + 4%(x2) 
- 

i Yhh) ’ Y,TS(X2> I 

= max{$(xl>, +(x2)) 

which completes the proof. 
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The above conditions to ensure a superlinear rate of convergence resemble the 
ones needed to establish the same result for the dual algorithm in Barros et al. 
(1994). However, for the new algorithm the strong Slater condition is additionally 
required. On the other hand, the new algorithm proposed may be more suitable 
whenever the feasible set X is formed by “easy” and “difficult” constraints. Clearly, 
in this case by grouping in S the “easy” constraints yields an easier single-ratio frac- 
tional programming problem. However, the practicality of this algorithm depends 
mostly on how Step 1 is solved. Since (DA) and (&A) are equivalent problems, 
we will use the same type of approach developed in Barros et al. (1994) to solve 
(&A>. 

As observed (DA) corresponds to a Lagrangian dual of (PA) and thus we can 
relate an optimal solution of IC~+I of (PA,) to an optimal solution (yk+ 1, zk+ 1) of 
(Dxl,). To derive this relation, we will assume additionally that f;, g2, 
i = l,..., m and hj : R” --+ Ri, j = 1, . . . , s, are also differentiable func- 
tions and that the nonempty compact convex set 5’ is given by 

s := (22 E 72” : p&z) 5 0, I = 1,. . . , s} 

where pi : 72” --+ R, 1 = 1, . . . , s, are convex and differentiable functions. 
Clearly (PA,) is equivalent to the following convex programming problem 

min t 
s.t.:q,(z)-t<O Vi=1 ,..., m 

hj(X) 1.0 vj = l,...,P 

p&c) <o vz= l,...:s 

with qi(z) := fi(z) - Xkgz(z),i = 1,. . . , m. Let zk+i and tk+l be an optimal 
solution of the above problem, and define 1’ := { 1 < i 5 m : ql(zIcsl) = tk+,}, 
J’ := (1 5 j 5 r : hj(zk+l) = 0) and L’ := (1 < E < s : pl(zk+l) = O}. 
Since the Slater condition holds the Karush-Kuhn-Tucker conditions ensure the 
existence of nonnegative scalars u,; i E I’, ~j; j E J’ and El; 1 E L’ satisfying 

~i@4wTk+l) + ~j&T~yJw%+l) + ~l~L’ElvPd~k+l) = 0 (19) 

C&pUi = 1 (20) 

(UP, WY > h’ > 2 0. (21) 

Notice that the set 1’ is nonempty, due to the optimality of (zk+l, tk+l). It is now 
possible to relate the scalars ui, i E I’ and ~j, j E J’ to an optimal solution of 
(DA,). 

LEMMA 9. An optimal solution (6, 2) of (DA,) is given by 

& = 0 if i $ 1’ ~ 
,q if i E I’ ‘.i = 

0 if j $ J’ 
vj if j E J’ 

where ui and vj solve the system (19), (20), (21). 
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Proof. From (20) and (21) it follows that 6 belongs to C and i 1 0. Moreover, 
by the definition of I’ and J’ we obtain that 

~,,&a&+1 > + .&&~j(Q+1) = tk+1. 

Hence, since (DA,) is the Lagrangian dual of (PA,), it follows using the previous 
equality, that 

~&14i~i(nc+l) + q&J& 3 ~+%+I) = $I$y4fi(4 - h&(4} 

It is left to show that (9, 2) is an optimal solution of maxy~~,t>c G(y, Z, Xk). Since 
m~,69{~Td~) + ~Th(~>l is a convex optimization problem, the Karush-Kuhn- 
Tucker conditions are sufficient (Hiriart-Urruty and Lemarechal, 1993). Clearly, 
by the definition of (c, 2) and (19), (20), (21) the vector zk+r satisfies these 
conditions, and thus zk+l is an optimal solution of min,Es{~T~(~) + ZTh(x)}. 
Hence, jj E C, ,? 2 0 satisfy 

and so (3, i) solves (Dxk). 

This lemma provides an “easy” procedure to solve Step 1, and thus, to obtain the 
next iteration (yk+r , zk+r) of Algorithm 3. However, using this approach, a convex 
problem where the full set of constraints of X is present has to be solved in Step 1. 
Hence, the apparent advantage of this method over the dual method, whenever the 
feasible set X is formed by “easy” and “difficult” constraints, is here annulled. 

Notice that the above result “extends” Lemma 3.4 in Barros et al. (1994). 
Moreover, we also know by Lemma 2 that (yk+r , z~+r ) is an optimal solution of 
(DA,) if and only if yk+t is an optimal solution of (&A,). At the same time, it 
follows that zk+r belongs to argmax {G(yk+l, z, &+I) : z 2 0). This observation 
and the next result permit to rank the next iteration value Xk+r of both methods. 

LEMMA 10. Assume that the Slater condition and either (Cl) or (Cz) holds 
then, d(y, z) 5 c(y) for all (y, 2) E C x RI;. Moreover, for (yk+l, zk+l) an 
optimal solution of (DA,) and yk+l an optimal solution of (&A,), c(yr~+~) equals 
d(yk+l, zk+l) ifand only if zk+l belongs to 

argmax{G(y~+l, z, d(yk+l, ~+d) : z 2 0). 

Proof. Using the results of Dinkelbach (1967), we have 

0 = $j { ~~(f(4 - &M4} 
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Using again Dinkelbach (1967), the first result follows. For (yk+l, zk+l) being an 
optimal solution of (DA,) it follows by Lagrangian duality that the above inequality 
is actually an equality if and only if zk+l belongs to 

~gmaxF’(y~+l, z7 d(~lc+l, a+-~)) : 2 2 0). 

Hence, we obtain that d(yk+l, zk+l) = c(yk+l), and the result is proven. 

The above lemma raises the question if in practice the situation d(yk+t , xk+l ) < 
c(yk+t ) occurs frequently. According to our computational experience this situation 
does occur at the beginning of the application of the algorithms. This is to be 
expected in view of Lemma 10. Observe also that the computational effort required 
to compute d&+1, zk+t ) can be expected to be less, when S has “easy”constraints, 
than computing c(yk+l). 

3.2. LINEAR CASE 

We will now specialize the results derived in the previous section to the linear case. 
Hence, consider the generalized linear fractional programming problem defined 
by 

fi(x) := ai.x + ai, gi(x) := bi.x + ,&Vi E I and 
x := {x E Rn : Cx 5 y,x 2 0) 

where ai. and bi. denote respectively the ith row of the m x n matrix A and B, 
cxT = [al,.. .,wn], PT = [Pl,... ,,&I andCaq x nmatrixandy E Rq. We 
will also assume: 

(Al) Feasibility assumption. X E 77 is nonempty and bounded; 

(AZ) Positivity assumption. Bx + ,L? > 0 for all x E X. 

Thus our generalized linear fractional programming problem is given by 

Consider also the following optimization problem: 

min max G.X + %X0 

(~,~O)EXo ~EI bi.x + ,&x0 > 
(PO) 
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with k’o := -t 
(2, x0) E 7zn+l ) cx I 7x0, IqtlXj + x0 = 1) II: >0,20 2 0 > . 

Before analyzing the relation between the above optimization problem and (P), 
we will introduce the definition of equivalent problems (Craven, 1988). 

DEFINITION 11. The two optimization problems 

max(F(z) : J; E X}andmax{G(z) : 2 E Y} 

are called equivalent if there exists a one-to-one mapping (b of the feasible set X 
onto y such that F(z) := G(~(z)) for each x E X. 

It is now possible to relate the two optimization problems (P) and (PO). 

LEMMA 12. Zf (Al) and (AZ) hold, then (P) and (PO) are equivalent problems. 
Proof. In order to exhibit a one-to-one mapping of X onto X0, we will first 

show that for any (z, 20) E 20, the scalar 20 can never be zero. Suppose that there 
exists some (z, ~0) E X0 such that ICO equals 0. Thus Cx 5 0 and Cy=,xj = 1 
withxj >O,j = l,..., n. It follows now for any w  E X and t > 0 that 

w+tx>OandCwftCa:~~. 

Hence, UJ + tz E X for all t > 0 which contradicts the assumption (Al) that 
X is a bounded set. Consider the mapping 4 of X into X0 given by #(x) := 
,+c$ZIZj (2, 1). Clearly, the image of X under 4 is contained in X0. Moreover 

for all (2, so) E X0 there exists a unique point in X given by $ and thus $ is a 
one-to-one mapping of X onto X0. Also, it follows easily that the objective value 
of (P) at 2 E X equals the objective value of (PO) at 4(x) which concludes the 
proof. 

From the above lemma it follows that the denominators of (PO) are always positive 
for (2, x0) E Xc. On the other hand, by assumption (Al) we obtain that X0 is 
a nonempty bounded set. Therefore, if assumptions (Al) and (AZ) hold then the 
optimization problem (PO) corresponds to a standard generalized linear fractional 
problem. 

Observe also that the mapping used in the proof of Lemma 12 is equivalent to 
the Chames and Cooper transformation (Chames and Cooper, 1962). Therefore, 
Lemma 12 is comparable to the results derived in Chames and Cooper (1962) 
and in particular to the proof of equivalence between the different problems. 
However, while the Charnes and Cooper transformation is used to reduce a standard 
fractional linear programming problem into a linear programming problem, the 
transformation used in the context of Lemma 12 maintains the structure of the 
original problem. 

The transformation of (P) into (PO) will enable to apply directly the results 
derived for the nonlinear case in Section 3.1 to (PO). Indeed the feasible set of (PO) 
can be decomposed into the convex cone ((z, x0) E Rn+t : CTa: 5 yzo} and the 



160 A. I. BARROS ET AL. 

compactconvexsetS0 := {(z,zo) E Rn+l : leo-tC~=t~~ = 1,~ > 0,~ 2 O}.In 
order to derive the dual problem of (PO) the additional assumption BTx +/k. > 0 
for all (x, ~0) E So is required. Observe this is guaranteed by the stronger positivity 
assumption (A&) B > 0, ,B > 0, used in Crouzeix et al. (1983, 1985); Jagannathan 
and Schaible (1983). We can now state the dual of (PO): 

max inf 
yT(Az + cmo) + zT(Cz - 7x0) 

YE%20 (VO)ES, yT@ + ho) 
(Do) 

formed by the constraints related to the original problern. The new algorithm 
described in the previous section constructs a sequence (yk, zk) E C x R’, with 
function values d(yk, zk) approximating from below the optimal objective value 
of (PO). Remember that by Lemma 12 the value 19 (PO) equals 6 (P) . Hence, for a 
given X the new algorithm solves at Step 1 the parametric problem (DO,): 

u yT(A - XI?) + xTC) 2 + (yT(a: - XP) - “‘7) jo}} 

The next iteration point, (y, z), is given by an optimal solution of the above problem. 
It is left to evaluate the value of the objective function d of (DO) at this point, i.e. 
computing d(y, z). In this case, this corresponds to solving the following linear 
fractional programming problem: 

min 
yT(Az + cw-,) + zT(Cz - yzr,) 

(~,~O)ESO YT& + Pzo) 
(25.9 

Observe that the objective function in (22) is a ratio of linear functions, and thus 
quasiconcave. Since a quasiconcave function attains its minimum over a compact 
convex set at an extreme point (Avriel et al., 1988) it follows that the optimal value 
of (22) has the following special form 

where a.j , b.j and c.j denote respectively the jth column of A, B and C. This obser- 
vation implies that (Do) corresponds to the following generalized linear fractional 
programming problem: 

max 
y~E,z>O - 

Jy--yT% . aJy + ~3.2 

PTY - - ’ 1yz7 b;y 
(LD) 

which is the standard dual problem of a generalized linear fractional program, 
described in Crouzeix et al. (1983, 1985); Jagannathan and Schaible (1983), under 
assumption (A:). Observe that the above dual problem can be derived using a 
weaker (At) assumption. In fact in Crouzeix et al. (1983, 1985); Jagannathan and 
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Schaible (1983) instead of (At) it is only required that the feasible set should be 
non empty. 

Crouzeix et al. (1985) discuss how to solve (P) whenever the feasible set X is 
not bounded. In this case, they show that the Dinkelbach-type algorithm applied 
to the standard dual problem (LD) converges and recuperates the optimal solution 
value. Therefore, it is appropriate to relate this approach to the new dual algorithm. 
Observe that the Dinkelbach-type algorithm applied to (LD) requires solving the 
following parametric problem for a given X: 

nyx>omin (a - Afl)Ty - yTz, ,<“3’: n { (a.j - %J)Ty + c;z . (LDx) 
YE-,Z- 

However, due to the special form of (22) it follows that the above parametric prob- 
lem corresponds to (Doi). Also, in the Dinkelbach-type algorithm the next iteration 
value is given by (23) and hence the two algorithms are identical. Therefore, the 
new dual algorithm introduced in Section 3.1 extends to the nonlinear case the 
Dinkelbach-type algorithm applied to the dual of a generalized linear fraction- 
al program, as suggested in Crouzeix et al. (1985). Nevertheless, it is important 
to stress in order to apply Algorithm 3 it is required that the feasible set X is 
compact. 

Since for (P) the corresponding set S would be given by the noncompact set 
RT while for (PO) the associated So is compact, it follows that by considering 
(PO) instead of (P) the results derived in the previous section can be smoothly 
applied to the linear case. Hence, both Lemmas 2 and 10 are valid and show 
that although the Dinkelbach-type algorithm applied to the standard dual and the 
dual algorithm of Barros et al. (1994) consider the same parametric function, the 
next iteration points taken by these two algorithms are different. Observe also 
that by specializing Proposition 7 we retrieve a sufficient condition to guarantee 
superlinear convergence for the Dinkelbach-type algorithm applied to a generalized 
linear fractional program. Indeed, due to the special form of (22), it follows that 
(22) has a unique solution if 

min 
i 

aTy* -yTz* . a;!/* + +* 

PTY* - - ’ l?j% qy* I 

is uniquely attained. Therefore, the sufficient condition demands that for each 
optimal solution of (LD) only one ratio is active. Observe this implies that at a 
neighborhood of the optimal point the associated parametric function is concave, 
see Proposition 4.1 of Crouzeix et al. (1985). Hence, in the neighborhood of the 
optimum, the Dinkelbach-type algorithm “coincides” with Newton’s method, and 
thus its convergence rate is superlinear. 

4. Scaled Algorithm 

Following the same strategy used to derive the scaled version of the dual algorithm 
(Barros et al., 1994) it is possible to construct the scaled version of the new algo- 
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rithm introduced in the previous section. Before presenting this variant we intro- 
duce for xk E 5’ the vector-valued functions f(“), g(‘) given by j$“’ (x) := s 

and g(“)(x) := e. Again, we will consider a convex generalized fractional 
programming pr%km and assume that the Slater condition holds. 

We can consider the optimization problem 

max d(‘“)(y, Z) 
?/EC,,->0 

with 

d(‘“) (y, z) := I$; 
yTfCk)(x) + ZTh(X) 

YTdk) (4 
and its associated parametric problem given by 

max G(‘“)(g, z, X) 
Ycc,=>o 

(DC”)) 

(DC’“)) x 

with 

G(“)(y, z, A) := 9% {yT ( fck’(x) - @(x))+zTh(x)} . 

Let now (yk, Zk) be an optimal solution of (Dr)) with X = d(k-l)(?Jk-t, Z&t), 
i.e. 

(Yk, Zk) := wzm~y,~,,~oG(k)(y, Z, A>. 

In order to simplify the notation we will use, whenever there is no danger of 
confusion, d’(Yk, Zk) instead of d(“)(yk, Zk). 

It is easy to show that ti(D(“)) equals 19(O). Moreover, it is also simple to 
establish an extension of Lemma 2 in terms of the scaled parametric functions. 
More precisely it follows that 

G(k)(Yk, Zkd(yk-l,Zk-1)) 

= y~~2o { 2; {YT (f(“)(x) - &!/k-l, Zk-l)dk)(X)) + ZTh(X)}} 

f(k)(x) - d’(Yk-1, Zk-l)g(k’(X))}} . 

Using the above equality and the convexity/concavity assumptions of the functions 
f(“), gck) for all k 2 0 on S it follows now, by Von Neumann’s min-max theorem 
that: 

G(“)(Yk, Zk, d’(Yk-l,Zk-1)) 

= 2; {zy{Y’ (fck)(x) - d’(Yk-l,Zk4)dk)(X))}} 

= 2; { Fp; {f’k)(x) - d’(Yk-1, Zk-l)gjki(X)}} 

= F(“+‘(yk-I)) 
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with F(“) : R -+ R the parametric function used in the Dinkelbach-type-2 algo- 
rithm (Crouzeix et al., 1986). However, while in the Dinkelbach-type-2 algorithm 
21~ is an optimal solution of the scaled parametric problem (F$-“), the vector 21, in 
this variant must be an optimal solution of the fractional programming problem: 

The scaled version of Algorithm 3 is described by the following procedure. 

ALGORITHM 4. 
Step 0’. 
If gi for all i E I are concave 

Then Let X0 := 0 and take zo E X 
Else Take yc E C, zc 2 0; 

Compute X0 := d’(y0, zu) = minzES Yz’~~,(~/~[$‘(z); 

Let 2 1 be an optimal solution of d’ (~0, ZO) ; 
Let k := 1; 
Step 1’. 
Determine (yk, zk) := argmax,,c,,zoG(“)(y, z, Xk-.1); 
Step 2’. 
If G(IC)(ylc, Xlc-t) = 0 

Then (yk, zk) is an optimal solution of (DC’“)) with value Xk- t and Stop. 
Else Goto Step 3’; 

Step 3’. 
Compute XI, := d’(ya, zk) and let zk+t be an optimal solution of d’(yk, zb); 
Let k := Ic + 1 and GoTo Step 1’. 

Similar to Barros et al. (1994) it can be shown that this scaled algorithm 
converges linearly, and that the sufficient condition of Proposition 7 also ensures 
that the rate of convergence of the scaled version becomes superlinear. 

5. Computational Experience 

In order to test the efficiency of the new dual algorithm, Algorithm 3 introduced 
in Section 3.1, we compared it with the Dinkelbach-type algorithm, Algorithm 
2 and the dual algorithm, Algorithm 1. This comparison is also extended to the 
correspondent scaled versions of these three algorithms. Therefore, we used the 
same test problems as in Barros et al. (1994), i.e. we considered ratios with numer- 
ator quadratic functions fi (x) := izTHiz + aTx + bi, and denominator linear 
functions, gi (z) := $11: + di. The quadratic functions, fi, are generated in the 
following way: 
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- In the linear term each element of the vector a, is uniformly drawn from 
[-15.0,45.0]. Similarly b; is drawn uniformly from [-30.0,0]; 

- The Hessian is defined by Hi := LiUiL’ where Li is a unit lower triangular 
matrix with components uniformly drawn from [-2.5,2.5] and Ui is a posi- 
tive diagonal matrix, with elements uniformly drawn from [O. 1,1.6]. When a 
positive semidefinite Hessian is required the first component of the diagonal 
matrix is set to zero. 

The linear functions, g;, are constructed using a similar procedure: each element of 
the vector ci is uniformly drawn from [O.O,lO.O]. Similarly di is drawn uniformly 
from [ 1 .O, 5.01. Finally, the feasible domains considered are the following: 

withS:={zERn:OI:z~<l,j=1,...,n}andJ~:={1<j~n:~isodd} 
and J2 := { 1 5 j < n : j is even}. 

Both methods were implemented in Sun Pascal, linked to a pair of existing 
routines written in Sun FORTRAN and ran on a Sun Spare System 600 worksta- 
tion, using the default double precision (64-bit IEEE floating point format) real 
numbers of Sun Pascal and FORTRAN. Both compilers were used with the default 
compilation options. 

For the minimization of the maximum of quadratic functions with linear con- 
straints we used the bundle trust method coded in FORTRAN (Outrata et al., 
1991). In the dual type algorithms Steps 1 and 1’ are solved by computing the 
correspondent minimal ellipsoidal norm problem, see Barros (1995). The frac- 
tional programming problem that occurs in Steps 0, 3, 0’ and 3’ of the dual type 
algorithms is solved by the classical Dinkelbach algorithm (Dinkelbach, 1967). 
The code used to solve the above quadratic problems is an implementation in 
FORTRAN of Len&e’s algorithm (Ravindran, 1972). 

In Algorithm 1 we used in Step 0 the initial point y: := (A, . . . , -!-), while in 
the new dual algorithm the initial points in Step 0 are given by yz := (6, . . . , A) 
and Z: := (0 Y”‘, 0). In the Dinkelbach-type algorithm we take in Step 0: 

Y,T.f b-4 X1 := d(yu, zu) = min -. 
&S Y&+4 

The tolerance used in both implementations is E := 5 x 10M6, see Barros (1995); 
Barros et al. (1994). 

The results of the computational experience are summarized in the following 
tables. For each pair (n, m), where n is the number of variables and m the number of 
ratios, 5 uncorrelated instances of the problem were generated and solved by these 
algorithms. Hence, the entries of the tables are averages of the corresponding values. 
The columns under Dinkel report the results obtained using the Dinkelbach-type 
algorithm for several ratios. Similarly, the columns under Dual report the results 
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obtained using Algorithm 1, while ND& report the results obtained using the new 
dual algorithm presented in Section 3.1. In these cases two extra columns are pre- 
sented concerning important steps of these algorithms. Hence, column %Fr refers 
to the percentage of the time used to compute the next iteration point, i.e. c(yk), 
respectively d( y,+ , ZL), while Column % K refers to the percentage of the time used 
to solve the Karush-Kuhn-Tucker system and thus obtaining yk+l, respectively 
bk+I > Zk+ 1). The column It refers to the number of iterations performed by the cor- 
responding algorithm. Each Set column refers to the execution time in seconds of 
the mentioned Sun workstation measured by the available standard clock function 
of the Sun Pascal library. This measures the elapsed execution time from the start 
to the end of the corresponding method, excluding input and output operations. 
Finally under the column Wmp. we report the percentage of improvement in total 
execution time between the three different algorithms tested. Thus, the percent- 
age of improvement in total execution time of the dual type algorithms over the 
Dinkelbach-type algorithm, are contained in column DiD, i.e. ( 1 - :l$$?!; x 100 

and column DND, i.e. (1 - $,cc(&f; ) x 100. Finally, column NDD contains the 
percentage of improvement in total execution time of the dual algorithm over the 
new dual algorithm, i.e. (1 - s:$g$ x 100. 

Tables I and II contain the results obtained for test problems where the quadratic 
functions, fi, are strictly convex. In these cases the convergence rate of both dual 
algorithms is superlinear, see Barros et al. (1994) and Proposition 7. From these 
results it seems that the new dual is better in terms of number of iterations than 
the Dinkelbach-type algorithm. However, this improvement is not as effective in 
terms of execution time, in particular, for the test problems with feasible set Xi. 
Observe, on average more iterations are required by the new dual algorithm than 
Algorithm 1. Furthermore, the Algorithm 1 has a much better performance than 
the new dual. 

Tables III and IV contain the results obtained for test problems where the 
quadratic functions, fi, are only convex. The results resumed in these two tables 
show that the behavior of the new dual algorithm worsens in the case where the 
functions fi are no longer strictly convex. Indeed, both in terms of number of 
iterations and execution time the performance of the new dual algorithm is not 
so often better than the one of the Dinkelbach-type algorithm. Again, for the test 
problems with feasible region X2 the new dual algorithm has a slightly better 
performance. However, the dual algorithm (Barros et al., 1994) still has a better 
performance than the new dual algorithm, and the Dinkelbach-type algorithm. 

Tables V and VI contain the computational results obtained with the scaled 
version of the mentioned algorithms, and using Z: := (0, . . . , 0). In these tables 
the columns under Dinkel-2 report the results obtained using the Dinkelbach-type- 
2 algorithm (Crouzeix et al., 1986). Similarly, the columns under Dual-2 report 
the results obtained using the scaled version of Algorithm 1 (Barros et al., 1994), 
while NDual-2 report the results obtained using the scaled version of the new dual 
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TABLE I. Xl and strictly quasiconvex ratios 

Prob. Dinkel Dual NDual % Imp. 

n m It See It %Fr %K Set It %Fr %h’ Set DiD DiND ,VDD 

5 5 8 0.87 3 16.3 1.6 0.64 6 12.7 4.5 1.49 26.4 -71.3 57.1 

10 5 11 10.45 3 8.1 1.4 4.08 6 8.0 1.2 7.43 61.0 28.8 45.2 

15 5 9 16.92 3 18.4 1.8 7.57 6 13.5 2.4 12.62 55.2 25.4 40.0 

20 5 8 33.81 3 9.0 0.7 21.33 7 8.4 0.9 42.14 36.9 -24.6 49.4 

5 10 9 1.51 4 15.5 3.8 0.53 6 12.4 4.3 0.98 64.6 34.8 45.7 

10 10 14 12.22 4 10.5 1.1 4.57 7 8.7 1.5 8.22 62.6 32.7 44.4 

15 10 9 18.29 3 10.4 1.1 11.51 7 10.5 1.8 19.26 37.1 -5.3 40.2 

20 10 10 53.07 3 10.0 0.8 25.32 7 8.7 0.9 46.26 52.3 12.8 45.3 

5 15 8 3.02 3 8.9 3.1 1.01 8 6.5 2.9 2.50 66.7 17.4 59.7 

10 15 11 11.39 3 10.5 1.2 4.76 8 9.3 1.1 9.81 58.2 13.9 51.5 

15 15 9 26.59 3 10.3 1.0 14.06 8 8.7 1.1 27.47 47.1 -3.3 48.8 

20 15 12 71.10 3 9.5 0.8 28.96 8 9.2 1.0 59.86 59.3 15.8 51.6 

5 20 9 1.58 4 10.7 2.4 0.99 8 10.1 4.2 1.91 37.3 -21.1 48.2 

10 20 11 13.95 4 10.5 1.6 5.50 8 8.7 1.7 10.70 60.6 23.3 48.6 

15 20 11 34.01 4 9.3 0.9 14.90 7 8.6 1.0 27.52 56.2 19.1 45.9 

20 20 13 77.23 3 9.6 0.8 34.87 7 8.9 1.0 64.66 54.9 16.3 46.1 

TABLE II. X2 and strictly quasiconvex ratios 

Prob. Dinkelb Dual NDual %Imp. 

n m It Set It %Fr %K Set It %Fr %Ii Set DiD DiND ,VDD 

5 5 8 2.15 2 10.2 0.4 0.79 4 7.8 1.3 1.30 63.1 39.7 38.8 

10 5 11 13.08 3 9.5 0.8 5.65 6 7.6 0.9 9.04 56.8 30.9 37.6 

15 5 9 23.66 3 11.4 0.8 11.51 5 10.0 1.1 14.64 51.4 38.1 21.4 

20 5 9 43.54 3 9.9 0.6 21.89 5 9.0 0.8 39.16 49.7 10.1 44.1 

5 10 12 2.43 4 12.9 2.2 0.88 6 10.2 2.5 1.09 63.7 55.2 18.9 

10 10 13 12.33 3 8.8 0.7 5.47 6 8.4 0.8 8.62 55.6 30.1 36.5 

15 10 13 38.49 3 8.6 0.6 16.74 6 8.4 0.8 26.53 56.5 31.1 36.9 

20 10 10 58.73 3 9.8 0.6 31.17 5 8.0 0.7 47.01 46.9 20.0 33.7 

5 15 9 1.80 3 15.8 3.1 0.77 5 15.6 3.3 1.17 57.0 35.1 33.7 

10 15 11 14.79 3 8.0 0.7 6.97 7 7.4 0.8 12.45 52.9 15.8 44.0 

15 15 9 30.97 3 8.9 0.7 16.92 6 7.9 0.7 29.13 45.4 6.0 41.9 

20 15 11 75.05 3 9.1 0.6 35.01 6 8.7 0.7 62.91 53.3 16.2 44.3 

5 20 8 1.99 4 13.0 2.0 1.13 7 7.2 2.1 1.97 43.0 1.2 42.4 

10 20 11 15.10 3 8.2 0.9 7.68 6 8.0 1.2 12.02 49.2 20.4 36.1 

15 20 13 38.51 3 9.1 0.9 16.52 6 8.0 0.9 31.09 57.1 19.3 46.9 

20 20 11 88.73 3 8.0 0.5 38.61 7 7.3 0.6 78.78 56.5 11.2 51.0 
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TABLE III. Xl and semistrictly quasiconvex ratios 

Prob. Dinkel Dual NDual %Imp. 

n m It Set It %Fr %h’ Set It %Fr %K Set DiD DiND NDD 

5 5 8 0.60 5 13.1 7.6 0.47 12 10.6 6.8 1.20 21.7 - 100.6 60.9 

10 5 14 7.32 3 10.7 2.2 2.15 8 12.0 2.3 4.54 70.6 38.0 52.6 

15 5 11 19.25 3 10.0 1.4 8.85 10 10.3 1.9 22.84 54.0 -18.7 61.2 

20 5 11 36.75 3 9.5 1.1 17.52 7 8.9 1.4 33.92 52.3 7.7 48.3 

5 10 12 2.14 4 8.3 5.6 0.99 14 10.6 4.9 3.25 53.6 -51.7 69.4 

10 10 10 13.91 4 6.6 1.4 5.73 12 6.6 1.4 15.37 58.8 -10.5 62.7 

15 10 10 20.07 3 7.2 1.5 8.30 7 10.3 2.0 18.79 58.6 6.4 55.8 

20 10 12 66.09 3 7.9 1.0 27.52 11 7.8 1.2 70.62 58.4 -6.9 61.0 

5 15 7 2.82 4 5.3 1.1 2.22 11 4.0 2.3 4.37 21.2 -55.1 49.2 

10 15 11 14.45 3 7.6 1.2 4.46 10 8.7 1.3 11.88 69.1 17.8 62.4 

15 15 11 36.63 3 6.8 1.0 17.62 11 7.0 1.2 43.93 51.9 -19.9 59.9 

20 15 11 62.41 3 8.2 0.9 29.53 9 8.6 1.1 68.14 52.7 -9.2 56.7 

5 20 11 2.33 4 11.6 2.4 0.91 13 12.2 5.1 2.57 60.9 -10.3 64.6 

10 20 11 14.89 4 9.7 2.3 6.04 10 8.8 1.6 14.46 59.4 2.9 58.2 

15 20 12 33.14 3 8.0 1.2 13.09 9 8.7 1.4 31.70 60.5 4.4 58.7 

20 20 12 84.98 4 6.1 0.7 38.26 12 7.0 0.8 95.54 55.0 -12.4 60.0 

TABLE IV. Xl and semistrictly quasiconvex ratios 

Prob. Dinkel Dual NDual %Imp. 

n m It Set It %Fr %K Set It %Fr %h’ Set DiD DiND XDD 

5 5 8 0.49 7 22.5 3.0 0.62 9 17.7 11.7 0.82 -26.4 -66.3 24.0 

10 5 13 8.53 3 15.7 2.9 2.38 7 12.9 2.7 5.02 72.1 41.2 52.6 

15 5 9 35.09 3 7.3 0.6 20.22 9 6.0 0.8 43.04 42.4 -22.7 53.0 

20 5 11 47.46 3 8.9 0.8 25.84 6 8.2 0.9 41.35 45.6 12.9 37.5 

5 10 13 2.91 5 16.0 1.6 1.08 11 10.5 3.1 2.18 63.0 25.1 50.6 

10 10 9 13.32 3 11.9 0.9 3.92 9 10.0 1.8 10.33 70.6 22.4 62.1 

15 10 11 24.04 3 9.0 1.3 12.03 8 9.6 1.6 21.77 50.0 9.4 44.8 

20 10 10 69.11 3 7.7 0.5 38.73 7 7.4 0.7 61.41 44.0 11.1 36.9 

5 15 9 4.36 4 15.0 2.9 1.15 8 9.2 2.1 2.48 73.6 43.1 53.5 

10 15 10 13.75 3 9.4 0.9 5.65 9 8.6 1.0 12.21 58.9 11.2 53.7 

15 15 12 51.96 3 6.8 0.5 21.59 8 6.4 0.7 42.82 58.5 17.6 49.6 

20 15 10 70.29 3 8.5 0.6 35.50 8 7.3 0.7 75.72 49.5 -7.7 53.1 

5 20 14 4.09 4 13.6 3.0 1.15 9 13.7 4.2 1.65 71.9 59.5 30.4 

10 20 10 16.72 3 8.0 1.0 6.78 10 7.0 1.1 17.18 59.5 -2.7 60.5 

15 20 11 42.89 3 6.8 0.5 19.98 9 6.3 0.7 47.52 53.4 -10.8 58.0 

20 20 12 104.54 4 7.3 0.4 45.37 12 6.2 0.6 113.72 56.6 -8.8 60.1 



168 A. 1. BARROS ETAL. 

TABLE V. Strictly quasiconvex ratios 

Xl x2 

Prob. Dink-2 Dual-2 NDual-2 Dink-2 Dua l-2 NDual-2 

n m It Set It Set It Set It Set It Set It Set 

5 55 0.75 3 0.68 6 1.66 6 1.81 3 1.11 5 1.84 
10 56 7.79 3 4.71 7 9.52 6 11.98 3 6.37 6 11.00 
15 56 15.49 3 8.73 6 15.19 6 19.01 3 11.81 5 16.34 
20 5 6 37.54 3 20.71 7 44.71 6 32.55 3 20.65 5 37.40 

5 10 5 0.62 3 1.46 6 2.01 6 1.67 3 0.77 5 1.46 
10 10 6 6.60 3 4.34 7 9.90 6 7.45 3 5.78 6 8.44 
15 10 6 16.27 3 12.39 7 23.97 6 21.77 3 17.26 6 26.54 
20 10 6 43.85 3 31.47 7 72.09 5 47.10 3 31.13 6 52.3 1 
,5 15 6 2.74 3 2.03 8 3.14 6 1.22 3 1.75 6 1.74 
10 15 6 8.46 3 6.64 8 11.44 6 10.68 3 7.49 7 13.76 
15 15 6 22.41 3 13.72 8 31.93 7 29.20 3 16.84 6 28.44 
20 15 6 51.63 3 34.03 8 72.36 6 51.93 3 34.17 6 66.23 

5 20 5 1.46 4 1.02 8 2.57 5 1.52 3 1.30 7 2.22 
10 20 6 8.13 4 8.11 8 12.20 6 9.33 3 10.45 6 15.17 
15 20 6 25.35 4 17.57 8 30.93 6 24.86 3 15.23 7 29.66 
20 20 6 56.72 3 31.36 8 63.29 6 60.00 3 39.96 7 82.28 

TABLE VI. Semistrictly quasiconvex ratios 

Prob. Dink-2 Dual-2 NDual-2 Dink-2 Dual-2 NDual-2 

n m It Set It Set It Set It Set It Set It Set 

5 5.5 0.53 6 0.84 12 1.13 5 0.37 7 0.84 10 1.31 
10 56 3.83 3 2.45 8 5.58 7 5.24 3 3.79 7 6.03 
15 5 6 13.72 3 10.48 10 32.21 6 28.32 4 23.07 10 50.78 
20 5 5 20.76 3 14.09 7 30.01 6 33.00 3 23.14 7 40.14 

5 10 6 1.53 4 1.94 14 5.30 7 1.97 5 1.25 11 3.23 
10 10 6 12.41 3 9.66 12 20.81 6 11.63 3 5.85 8 11.52 
15 10 5 15.59 3 10.38 7 34.34 6 18.66 3 13.77 8 23.61 
20 10 6 39.35 3 30.72 11 70.90 6 45.86 3 37.44 7 60.98 

5 15 6 3.94 4 2.40 11 4.08 6 3.56 4 1.67 8 2.63 
10 15 6 7.95 3 5.28 10 12.36 6 10.50 3 6.22 9 13.51 
15 15 6 25.73 4 20.06 11 49.00 6 33.27 3 21.20 8 44.73 
20 15 6 52.98 3 31.32 10 84.40 7 60.97 3 31.31 9 70.72 

5 20 6 1.37 4 1.97 12 3.11 6 1.56 4 1.48 8 1.87 
10 20 6 12.81 4 6.96 10 21.42 6 13.05 3 9.04 11 22.80 
15 20 6 21.24 3 15.09 9 32.31 6 38.13 3 21.94 9 49.75 
20 20 6 54.79 4 39.71 12 98.10 6 69.49 3 50.33 12 116.22 
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algorithm presented in Section 4. Since the total computational time used by the 
scaled versions of the dual-type algorithms appeared to be distributed in a similar 
way as for its original version these tables are presented in a more condensed form. 
Tables V and VI show that the Dinkelbach-type-2 algorithm dominates, both in 
iteration number and execution time, the Dinkelbach-type algorithm. On the other 
hand, the scaling of both the dual-type algorithms does not appear to produce 
significant improvements on the behavior of the original algorithms. Contrary to 
the dual algorithm (Barros et al., 1994) the new dual algorithm and its scaled 
version no longer dominate the Dinkelbach-type-2 algorithm. 

6. Conclusions 

The usual approach to generalized fractional programming is usually a primal 
approach due to the “awkward’ form of the standard dual problem of a generalized 
fractional program. Recently, Barros et al. (1994) proposed a dual algorithm for 
generalized fractional programming by means of an alternative dual. However, 
it was left to investigate if the standard dual could actually be solved efficiently. 
This paper answers this question by introducing a new algorithm which solves 
in an efficient way this “awkward” dual. Moreover, this algorithm extends to the 
nonlinear case the Dinkelbach-type algorithm applied to the standard dual of a 
generalized linear fractional program. Therefore, it can be seen as an extension 
of a Dinkelbach-type algorithm to the nonlinear case with a “difficult” parametric 
problem. However, under some reasonable assumptions it is possible to solve effi- 
ciently this parametric problem in the nonlinear case. Moreover, due to information 
provided by the dual problem it is possible to derive better rate of convergence 
results for the new algorithm than for the Dinkelbach-type algorithm applied to the 
primal problem. Finally, the approach developed in this paper also permits to show 
that the standard duality results for the special case of generalized linear fractional 
programs with a compact feasible region can be easily derived by specializing the 
duality results for the more general nonlinear case. 
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